Foundation of Cryptography, Lecture 6
Interactive Proofs and Zero Knowledge

Handout Mode

Iftach Haitner, Tel Aviv University

Tel Aviv University.

April 11, 2019
Part I

Interactive Proofs
NP as a Non-interactive Proofs

Definition 1 (NP)

\[
\mathcal{L} \in \text{NP} \iff \exists \text{ and poly-time algorithm } V \text{ such that:}
\]

\[\forall x \in \mathcal{L} \text{ there exists } w \in \{0, 1\}^* \text{ s.t. } V(x, w) = 1\]

\[V(x, w) = 0 \text{ for every } x \notin \mathcal{L} \text{ and } w \in \{0, 1\}^*\]

Only \(|x|\) counts for the running time of \(V\).

A proof system

\[\begin{align*}
&\text{Efficient verifier, efficient prover (given the witness)} \\
&\text{Soundness holds unconditionally}
\end{align*}\]
Interactive proofs
Protocols between \textbf{efficient} verifier and \textbf{unbounded} provers.

\textbf{Definition 2 (Interactive proof)}
A protocol \((P, V)\) is an \textbf{interactive proof} for \(L\), if \(V\) is \textsc{PPT} and:

\textbf{Completeness} \quad \forall x \in L, \Pr[(P, V)(x) = 1] \geq 2/3.

\textbf{Soundness} \quad \forall x \not\in L, \text{ and any algorithm } P^* \\
\Pr[(P^*, V)(x) = 1] \leq 1/3.

\(\text{IP}\) is the class of languages that have interactive proofs.

\begin{itemize}
 \item \(\text{IP} = \text{PSPACE}!\)
 \item We typically consider (and achieve) perfect completeness.
 \item Negligible “soundness error” achieved via repetition.
 \item Sometime we have efficient provers via “auxiliary input”.
 \item Relaxation: \textit{Computationally sound proofs} [also known as, \textit{interactive arguments}]: soundness only guaranteed against \textbf{efficient} (\textsc{PPT}) provers.
\end{itemize}
Section 1

Interactive Proof for Graph Non-Isomorphism
Graph isomorphism

\(\Pi_m \) – the set of all permutations from \([m]\) to \([m]\)

Definition 3 (graph isomorphism)

Graphs \(G_0 = ([m], E_0) \) and \(G_1 = ([m], E_1) \) are isomorphic, denoted \(G_0 \equiv G_1 \), if \(\exists \pi \in \Pi_m \) such that

\[(u, v) \in E_0 \text{ iff } (\pi(u), \pi(v)) \in E_1.\]

\[\mathcal{GI} = \{(G_0, G_1) : G_0 \equiv G_1 \} \in \mathcal{NP}\]

\[\text{Does } \mathcal{GNI} = \{(G_0, G_1) : G_0 \not\equiv G_1 \} \in \mathcal{NP}?\]

\[\text{We will show a simple interactive proof for } \mathcal{GNI}\]

Idea: Beer tasting...
Interactive proof for GNI

Protocol 4 ((P, V))

Common input: $G_0 = ([m], E_0)$, $G_1 = ([m], E_1)$.

1. V chooses $b \leftarrow \{0, 1\}$ and $\pi \leftarrow \Pi_m$, and sends $\pi(E_b)$ to P.

2. P send b' to V (tries to set $b' = b$).

3. V accepts iff $b' = b$.

\[\pi(E) = \{ (\pi(u), \pi(v)) : (u, v) \in E \} \]

Claim 5

The above protocol is IP for GNI, with perfect completeness and soundness error $\frac{1}{2}$.
Proving Claim 5

- Graph isomorphism is an equivalence relation (separates the set of all graph pairs into separate subsets)

- \([m, \pi(E_i)]\) is a random element in \([G_i]\) — the equivalence class of \(G_i\)

Hence,

\[G_0 \equiv G_1 \colon \Pr[b' = b] \leq \frac{1}{2}.
\]

\[G_0 \not\equiv G_1 \colon \Pr[b' = b] = 1\] (i.e., \(P\) can, possibly inefficiently, extracted from \(\pi(E_i)\))

\[\square\]
Part II

Zero knowledge Proofs
Where is Waldo?

Question 6
Can you prove you know where Waldo is without revealing his location?
The concept of zero knowledge

- Proving w/o revealing any addition information.
- What does it mean?
 Simulation paradigm.
Distribution ensembles, revisited

We will consider distribution ensembles indexed by arbitrary sets.

Let $\mathcal{L} \subseteq \{0, 1\}^*$, and let $P = \{P_x\}_{x \in \mathcal{L}}$ and $Q = \{Q_x\}_{x \in \mathcal{L}}$ be two distribution ensemble.

P is computationally indistinguishable from Q, denoted $P \approx_c Q$, means that

$$\left| \Pr_{y \leftarrow P_x} \left[D(1^{|x|}, y) = 1 \right] - \Pr_{y \leftarrow Q_x} \left[D(1^{|x|}, y) = 1 \right] \right| \leq \text{neg}(|x|)$$

Let $\langle (A(a), B(b))(c) \rangle_B$ denote B’s view in random execution of $(A(a), B(b))(c)$.
Zero-knowledge proofs

Definition 7 (zero-knowledge proofs)

An interactive proof \((P, V)\) is computational zero-knowledge proof \((CZK)\) for \(\mathcal{L}\), if \(\forall\) PPT \(V^*\), \(\exists\) PPT \(S\) (i.e., simulator) such that

\[
\{\langle (P, V^*)(x) \rangle_{V^*} \}_{x \in \mathcal{L}} \approx_{c} \{S(x)\}_{x \in \mathcal{L}} \tag{1}
\]

Perfect \(ZK\) (\(PZK\))/statistical \(ZK\) (\(SZK\)) — the above distributions are identically/statistically close.

1. \(ZK\) is a property of the prover.
2. \(ZK\) only required to hold wrt. true statements.
3. If \(P\) takes input \(w \in R_\mathcal{L}(x)\), we consider \(\langle (P(w), V^*)(x) \rangle_{V^*}\)
4. Trivial to achieve for \(\mathcal{L} \in BPP\).
5. The \(NP\) proof system is typically not zero knowledge.
6. Meaningful also for languages outside \(NP\).
7. Auxiliary input (will give formal def later)
Zero-knowledge proofs, cont.

1. ZK for honest verifiers: (1) only holds for $V^* = V$.

2. We sometimes assume for notational convenient, and wlg, that a cheating V^* outputs its view.

3. Statistical ZK proofs are believed to to exists only for a restricted subclass of \mathcal{NP}, so to go beyond that we settle for computational ZK (as in this course) or for arguments.
Section 2

Zero-Knowledge Proof for Graph Isomorphism
Zero-knowledge proof for GI

Idea: route finding

Protocol 8 ((P, V))

Common input: $x = (G_0 = ([m], E_0), G_1 = ([m], E_1))$

P’s input: a permutation π over $[m]$ such that $\pi(E_1) = E_0$.

1. P chooses $\pi' \leftarrow \Pi_m$ and sends $E = \pi'(E_0)$ to V.
2. V sends $b \leftarrow \{0, 1\}$ to P.
3. If $b = 0$, P sets $\pi'' = \pi'$, otherwise, it sends $\pi'' = \pi' \circ \pi$ to V.
4. V accepts iff $\pi''(E_b) = E$.

Claim 9

Protocol 8 is a SZK for GI, with perfect completeness and soundness $\frac{1}{2}$.
Proving Claim 9

- Completeness: Clear

- Soundness: If exist $j \in \{0, 1\}$ for which $\exists \pi' \in \Pi_m$ with $\pi'(E_j) = E$, then V rejects w.p. at least $\frac{1}{2}$.

Assuming V rejects w.p. less than $\frac{1}{2}$ and let π_0 and π_1 be the values guaranteed by the above observation (i.e., mapping E_0 and E_1 to E respectively).

Then $\pi_0^{-1}(\pi_1(E_1)) = \pi_0 \implies (G_0, G_1) \in GI$.

- ZK: Idea – for $(G_0, G_1) \in GI$, it is easy to generate a random transcript for Steps 1–2, and to be able to open it with prob $\frac{1}{2}$.
The simulator

For a start, consider a deterministic cheating verifier V^* that never aborts.

Algorithm 10 (S)

Input: $x = (G_0 = ([m], E_0), G_1 = ([m], E_1))$

Do $|x|$ times:

1. Choose $b' \leftarrow \{0, 1\}$ and $\pi \leftarrow \Pi_m$, and “send" $\pi(E_{b'})$ to $V^*(x)$.
2. Let b be V^*’s answer. If $b = b'$, send π to V^*, output V^*’s view and halt. Otherwise, rewind V^* to its initial step, and go to step 1.

Abort.

Claim 11

$\{(P, V^*)(x)\}_{x \in \mathcal{G}_I} \approx \{S(x)\}_{x \in \mathcal{G}_I}$

Claim 11 implies that Protocol 8 is zero knowledge.
Proving Claim 11

Consider the following inefficient simulator:

Algorithm 12 (S')

Input: $x = (G_0 = ([m], E_0), G_1 = ([m], E_1))$.

Do $|x|$ times:

1. Choose $\pi \leftarrow \Pi_m$ and send $E = \pi(E_0)$ to $V^*(x)$.

2. Let b be V^*’s answer.

 W.p. $\frac{1}{2}$,

 2.1 Find π' such that $E = \pi'(E_b)$, and send it to V^*.

 2.2 Output V^*’s view and halt.

Otherwise, rewind V^* to its initial step, and go to step 1.

Abort.

Claim 13

$S(x) \equiv S'(x)$ for any $x \in GI$.

Proof: ?
Proving Claim 11 cont.

Consider a second inefficient simulator:

Algorithm 14 (S'')

<table>
<thead>
<tr>
<th>Input: $x = (G_0 = ([m], E_0), G_1 = ([m], E_1))$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Choose $\pi \leftarrow \Pi_m$ and send $E = \pi(E_0)$ to $V^*(x)$.</td>
</tr>
<tr>
<td>2. Find π' such that $E = \pi'(E_b)$ and send it to V^*</td>
</tr>
<tr>
<td>3. Output V^*’s view and halt.</td>
</tr>
</tbody>
</table>

Claim 15

$\forall x \in GI$ it holds that

1. $\langle (P, V^*(x)) \rangle_{V^*} \equiv S''(x)$.
2. $SD(S''(x), S'(x)) \leq 2^{-|x|}$.

Proof: ? (1) is clear.
Proving Claim 15(2)

Fix $t \in \{0, 1\}^*$ and let $\alpha = \Pr_{S''(x)}[t]$. It holds that

$$\Pr_{S'(x)}[t] = \alpha \cdot \sum_{i=1}^{|x|} (1 - \frac{1}{2})^{i-1} \cdot \frac{1}{2}$$

$$= (1 - 2^{-|x|}) \cdot \alpha$$

Hence, $\text{SD}(S''(x), S'(x)) \leq 2^{-|x|}$ \qed
Remarks

1. Perfect ZK for “expected polynomial-time" simulators.

2. Aborting verifiers.

3. Randomized verifiers.
 3.1 The simulator first fixes the coins of V^* at random.
 3.2 Same proof goes through.

4. Negligible soundness error?
 4.1 Amplify by repetition
 4.2 But what about the ZK?
“Transcript simulation" might not suffice!

Let \((G, E, D)\) be a public-key encryption scheme and let \(\mathcal{L} \in \mathcal{NP}\).

Protocol 16 ((P, V))

Common input: \(x \in \{0, 1\}^*\)

P’s input: \(w \in R_{\mathcal{L}}(x)\)

1. V chooses \((d, e) \leftarrow G(1^{|x|})\) and sends \(e\) to P
2. P sends \(c = E_e(w)\) to V
3. V accepts iff \(D_d(c) \in R_{\mathcal{L}}(x)\)

- The above protocol has perfect completeness and soundness.
- Is it zero-knowledge?
- It has “transcript simulator" (at least for honest verifiers): exits PPT S such that \(\langle(P(w \in R_{\mathcal{L}}(x)), V(x))_{\text{trans}} \rangle_{x \in \mathcal{L}} \approx_c \{S(x)\}_{x \in \mathcal{L}}\), where \text{trans} stands for the transcript of the protocol (i.e., the messages exchange through the execution).
Section 3

Composition of Zero-Knowledge Proofs
Is zero-knowledge maintained under composition?

- Sequential repetition?
- Parallel repetition?
Zero-knowledge proof, auxiliary input variant

Definition 17 (zero-knowledge proofs, auxiliary input)

An interactive proof \((P, V)\) is auxiliary-input computational zero-knowledge proof \((\mathcal{CZK})\) for \(L \in \mathcal{NP}\), if \(\forall\) deterministic poly-time \(V^*\), \(\exists\) PPT \(S\) s.t.

\[
\{\langle (P(w(x)), V^*(z(x))(x) \rangle_{V^*} \}_{x \in L} \approx_c \{S(x, z(x))\}_{x \in L}.
\]

for any poly-bounded functions \(w\) with \(w(x) \in R_L(x)\) and \(z: L \mapsto \{0, 1\}^*\).

Perfect \(\mathcal{ZK}(PZK)/\text{statistical auxiliary-input } \mathcal{ZK}(SZK)\) — the above distributions are identically/statistically close.

- Strengthening of the standard definition.
- The protocol for \(GI\) we just saw, is also auxiliary-input \(SZK\).
- What about randomized verifiers?
- Necessary for proving that zero-knowledge proof compose sequentially.
- To keep things simple, we will typically prove the non-auxiliary zero-knowledge, but all proofs we present can easily modified to achieve the stronger auxiliary input variant.
Is zero-knowledge maintained under composition?, cont.

- Auxiliary-input zero-knowledge is maintained under **sequential** repetition.
- Zero-knowledge might not maintained under **parallel** repetition.

Examples:
- Chess game
- Signature game
Section 4

Black-box Zero Knowledge
Black-box simulators

Definition 18 (Black-box simulator)

\((P, V)\) is CZK with black-box simulation for \(\mathcal{L}\), if \(\exists\) oracle-aided PPT \(S\) s.t.

\[
\{\langle (P, V^*(z(x)) (x) \rangle_{V^*} \}_{x \in \mathcal{L}} \approx_c \{S^{V^*(x, z(x))} (x) \}_{x \in \mathcal{L}}
\]

for any det. poly-time \(V^*\), and poly-output \(z: \mathcal{L} \mapsto \{0, 1\}^*\).

Prefect and statistical variants are defined analogously.

1. “Most simulators" are black box
2. Strictly weaker then general simulation!
Section 5

Zero-knowledge proofs for all NP
\textbf{CZK for 3COL}

- Assuming OWFs exists, we give a (black-box) CZK for 3COL.
- We show how to transform it for any $\mathcal{L} \in \mathcal{NP}$ (using that $3\text{COL} \in \mathcal{NP}C$).

\textbf{Definition 19 (3COL)}

$G = (M, E) \in 3\text{COL}$, if $\exists \phi: M \leftrightarrow [3]$ s.t. $\phi(u) \neq \phi(v)$ for every $(u, v) \in E$.

We use commitment schemes.
The protocol

Let π_3 be the set of all permutations over $[3]$. We use perfectly binding commitment $\text{Com} = (\text{Snd}, \text{Rcv})$.

Protocol 20 ((P, V))

Common input: Graph $G = (M, E)$ with $n = |G|$

P’s input: a (valid) coloring ϕ of G

1. P chooses $\pi \leftarrow \Pi_3$ and sets $\psi = \pi \circ \phi$

2. $\forall v \in M$: P commits to $\psi(v)$ using Com (with security parameter 1^n).
 Let c_v and d_v be the resulting commitment and decommitment.

3. V sends $e = (u, v) \leftarrow E$ to P

4. P sends $(d_u, \psi(u)), (d_v, \psi(v))$ to V

5. V verifies that

 5.1 Both decommitments are valid,
 5.2 $\psi(u), \psi(v) \in [3]$, and
 5.3 $\psi(u) \neq \psi(v)$.
Claim 21

The above protocol is a CZK for 3COL, with perfect completeness and soundness \(1/|E|\).

- **Completeness:** Clear
- **Soundness:** Let \(\{c_v\}_{v \in M}\) be the commitments resulting from an interaction of \(V\) with an arbitrary \(P^*\).

 Define \(\phi : M \mapsto [3]\) as follows:

 \[\forall v \in M : \text{let } \phi(v) \text{ be the (single) value that it is possible to decommit } c_v \text{ into (if not in } [3], \text{ set } \phi(v) = 1).\]

 If \(G \notin 3\text{COL}\), then \(\exists (u, v) \in E \text{ s.t. } \psi(u) = \psi(v).\)

 Hence, \(V\) rejects such \(x\) w.p. at least \(1/|E|\).
Fix a deterministic, non-aborting V^* that gets no auxiliary input.

Algorithm 22 (S)

Input: A graph $G = (M, E)$ with $n = |G|$

Do $n \cdot |E|$ times:

1. Choose $e' = (u, v) \leftarrow E$.

 1.1 Set $\psi(u) \leftarrow [3]$

 1.2 Set $\psi(v) \leftarrow [3] \setminus \{\psi(u)\}$, and

 1.3 Set $\psi(w) = 4$ for $w \in M \setminus \{u, v\}$.

2. $\forall v \in M$: commit to $\psi(v)$ to V^* (resulting in c_{v} and d_{v})

3. Let e be the edge sent by V^*.

 If $e = e'$, send $(d_{u}, \psi(u)), (d_{v}, \psi(v))$ to V^*, output V^*’s view and halt.

 Otherwise, rewind V^* to its initial step, and go to step 1.

Abort.
Algorithm 23 (\(\tilde{S}\))

Input: \(G = (V, E)\) with \(n = |G|\), and a (valid) coloring \(\phi\) of \(G\).

Do for \(n \cdot |E|\) times:

1. Choose \(e' \leftarrow E\).
2. Act like the honest prover does given private input \(\phi\).
3. Let \(e\) be the edge sent by \(V^*\). If \(e = e'\)
 3.1 Send \((\psi(u), d_u), (\psi(v), d_v)\) to \(V^*\),
 3.2 Output \(V^*\)'s view and halt.

Otherwise, rewind \(V^*\) to its initial step, and go to step 1.
Abort.

Claim 24

\[
\{\langle (P(w(x)), V^*)(x) \rangle_{V^*} \}_{x \in 3\text{COL}} \approx \{\tilde{S}^V^*(x)(x, w(x))\}_{x \in 3\text{COL}},
\]

for any \(w\) with \(w(x) \in R_L(x)\).

Proof: ?
Claim 25

\[\{S^V_\ast(x)(x)\}_{x \in 3\text{COL}} \approx_c \{\tilde{S}^V_\ast(x, w(x))\}_{x \in 3\text{COL}}, \text{ for any } w \text{ with } w(x) \in R_L(x). \]

Proof: Assume \(\exists \text{ PPT } D, p \in \text{poly}, w(x) \in R_L(x) \) and an infinite set \(\mathcal{I} \subseteq 3\text{COL} \) s.t.

\[
\Pr \left[D(S^V_\ast(x)(x)) = 1 \right] - \Pr \left[D(\tilde{S}^V_\ast(x, w(x))) = 1 \right] \geq \frac{1}{p(|x|)}
\]

for all \(x \in \mathcal{I} \).

Hence, \(\exists \text{ PPT } R^* \) and \(b \in [3] \) such that

\[
\Pr \left[\langle (Snd(4), R^*(x, w(x))) \rangle_{R^*} = 1 \right] - \Pr \left[\langle (Snd(b), R^*(x, w(x))) \rangle_{R^*} = 1 \right] \geq \frac{1}{|x| \cdot p(|x|)}
\]

for all \(x \in \mathcal{I} \).

In contradiction to the (non-uniform) security of Com.
Remarks

- Aborting verifiers
- Auxiliary inputs
- Soundness amplification
Extending to all \mathcal{NP}

For $L \in \mathcal{NP}$, let Map_X and Map_W be two poly-time computable functions s.t.

- $x \in L \iff \text{Map}_X(x) \in 3\text{COL}$
- $w \in R_L(x) \iff \text{Map}_W(w) \in R_{3\text{COL}}(\text{Map}_X(x))$.

Let (P, V) be a \mathcal{CZK} for 3COL with black-box simulation.

Protocol 26 $((P_L, V_L))$

Common input: $x \in \{0, 1\}^*$.

P_L’s input: $w \in R_L(x)$.

1. The two parties interact in $(P(\text{Map}_W(w)), V)(\text{Map}_X(x))$, where P_L and V_L taking the role of P and V respectively.

2. V_L accepts iff V accepts in the above execution.

Claim 27

(P_L, V_L) is a \mathcal{CZK} for L with the same completeness and soundness as (P, V) as for 3COL.

Completeness and soundness are clear (?)
Proving zero knowledge of \((P_L, V_L)\)

- For simplicity, \(Map_X\) is injective.
- We omit for ease of notation the the input from the verifier’s view.
- Let \(S\) be a black-box simulator of \((P, V)\).
- The oracle-aided \(S_L\) is defined by \(S_O(x) = S^O(Map_X(x))\).

Claim 28

\[\{\langle (P_L(w(x)), V_L^*)(x) \rangle_{V^*} \}_{x \in L} \approx_c \{S_{L^*}^V(x) \}_{x \in L} \quad \forall \text{ poly-time } V^* \text{ and } w.\]

Proof: Otherwise, let \(x' = Map_X(x)\) and \(w' = Map_W(w(x))\).

- \(\{\langle (P(w'), V_L^*)(x') \rangle_{V^*} \}_{x \in L} \not\approx_c \{S_{L^*}^V(x) \}_{x \in L}\)

\[\Rightarrow \{\langle (P(w'), V^*)(x') \rangle_{V^*} \}_{x' \in 3COL} \not\approx_c \{S_{3COL}^V(x') \}_{x' \in 3COL}\]

for \(x = Map_X^{-1}(x')\), \(w' = Map_W(w(x))\) and \(V^*(x')\) that acts like \(V_L^*(x)\).

- How \(V^*(x')\) knows \(x\)?
Part IV

Appendix

Not Taught in Class
Is non-auxiliary-input black-box ZK is auxiliary input ZK?

- Let $\mathcal{L} = \{1^n : n \in \mathbb{N}\}$ and consider the \mathcal{NP}-relation for \mathcal{L} defined as $R = \{(1^n, 0), (1^n, 1) : n \in \mathbb{N}\}$.

- Assume exists commitment scheme Com, that is computationally hiding against PPT uniform receivers, but not hiding against non-uniform PPT receivers.

- The following protocol is non-auxiliary input CZK for \mathcal{L} with black-box simulator, but not auxiliary-input CZK (it is not even witness hiding).

Protocol 29 ((P, V))

Common input: $x \in \{0, 1\}^*$

P’s input: $w \in R_\mathcal{L}(x)$

1. P commits to w using Com
2. V accepts if $x \in \mathcal{L}$.