Iftach Haitner, Tel Aviv University

Tel Aviv University.

March 13, 2019
Informal discussion

\(f \) is one-way \(\implies \) predicting \(x \) from \(f(x) \) is hard.

But predicting parts of \(x \) might be easy.

e.g., let \(f \) be a OWF then \(g(x, w) = (f(x), w) \) is one-way

Can we find a function of \(x \) that is totally unpredictable — looks uniform — given \(f(x) \)?

Such functions have many cryptographic applications
Formal definition

Definition 1 (hardcore predicates)

A poly-time computable \(b: \{0, 1\}^n \mapsto \{0, 1\} \) is an hardcore predicate of \(f: \{0, 1\}^n \mapsto \{0, 1\}^n \), if

\[
\Pr_{x \leftarrow \{0,1\}^n} [P(f(x)) = b(x)] \leq \frac{1}{2} + \text{neg}(n)
\]

for any PPT \(P \).

- Does any OWF has such a predicate?
- Is there a generic hardcore predicate for all one-way functions?

 Let \(f \) be a OWF and let \(b \) be a predicate, then \(g(x) = (f(x), b(x)) \) is one-way.

- Does the existence of hardcore predicate for \(f \) implies that \(f \) is one-way?

 Consider \(f(x, y) = x \), then \(b(x, y) = y \) is a hardcore predicate for \(f \)

 Answer to above is positive, in case \(f \) is one-to-one
Weak hardcore predicates

For \(x \in \{0, 1\}^n \) and \(i \in [n] \), let \(x_i \) be the \(i \)'th bit of \(x \).

Theorem 2

For \(f : \{0, 1\}^n \mapsto \{0, 1\}^n \), define \(g : \{0, 1\}^n \times [n] \mapsto \{0, 1\}^n \times [n] \) by

\[
g(x, i) = f(x), i
\]

Assuming \(f \) is one way, then

\[
\Pr_{x \leftarrow \{0,1\}^n, i \leftarrow [n]} [A(f(x), i) = x_i] \leq 1 - 1/2^n
\]

For any PPT \(A \).

Proof: ?

We can now construct an hardcore predicate “for" \(f ":

1. Construct a weak hardcore predicate for \(g \) (i.e., \(b(x, i) := x_i \)).
2. Amplify it into a (strong) hardcore predicate for \(g^t \) via parallel repetition

The resulting predicate is not for \(f \) but for (the one-way function) \(g^t \) ...
The Goldreich-Levin Hardcore predicate

For $x, r \in \{0, 1\}^n$, let $\langle x, r \rangle_2 := (\sum_{i=1}^{n} x_i \cdot r_i) \mod 2 = \bigoplus_{i=1}^{n} x_i \cdot r_i$.

Theorem 3 (Goldreich-Levin)

For $f: \{0, 1\}^n \mapsto \{0, 1\}^n$, define $g: \{0, 1\}^n \times \{0, 1\}^n \mapsto \{0, 1\}^n \times \{0, 1\}^n$ as $g(x, r) = (f(x), r)$.

If f is one-way, then $b(x, r) := \langle x, r \rangle_2$ is an hardcore predicate of g.

- Note that if f is one-to-one, then so is g.
- A slight cheat, b is defined for g and not for the original OWF f

Proof by reduction: a PPT A for predicting $b(x, r)$ “too well" from $(f(x), r)$, implies an inverter for f
Section 1

Proving GL – The information theoretic case
Min entropy

Definition 4 (min-entropy)

The min entropy of a random variable (or distribution) X, is defined as

$$H_{\infty}(X) := \min_{y \in \text{Supp}(X)} \log \frac{1}{\Pr_X[y]}.$$

Examples:

- Z is uniform over a set of size 2^k.

- $Z = X |_{f(X)=y}$, where $f : \{0, 1\}^n \mapsto \{0, 1\}^n$ is 2^k to 1 ,
 $y \in f(\{0, 1\}^n) := \{f(x) : x \in \{0, 1\}^n\}$ and X is uniform over $\{0, 1\}^n$.
 Equivalently, $X \leftarrow f^{-1}(y)$.

In both cases, $H_{\infty}(Z) = k$.
Pairwise independent hashing

Definition 5 (pairwise independent function family)

A function family $\mathcal{H} = \{h: \{0, 1\}^n \mapsto \{0, 1\}^m\}$ is pairwise independent, if $\forall x \neq x' \in \{0, 1\}^n$ and $y, y' \in \{0, 1\}^m$, it holds that

$$\Pr_{h \leftarrow \mathcal{H}}[h(x) = y \land h(x') = y'] = 2^{-2m}.$$

Lemma 6 (leftover hash lemma)

Let X be a rv over $\{0, 1\}^n$ with $H_\infty(X) \geq k$ and let $\mathcal{H} = \{h: \{0, 1\}^n \mapsto \{0, 1\}^m\}$ be pairwise independent. Then

$$\text{SD}((H, H(X)), (H, U_m)) \leq 2^{(m-k-2)/2},$$

where H is uniformly distributed over \mathcal{H} and U_m is uniformly distributed over $\{0, 1\}^m$.

See proof [here](#), page 13.
Efficient function families

Definition 7 (efficient function families)

An ensemble of function families \(\mathcal{F} = \{ \mathcal{F}_n \}_{n \in \mathbb{N}} \) is **efficient**, if

- **Samplable.** Exists PPT that given \(1^n \), outputs (the description of) a uniform element in \(\mathcal{F}_n \).

- **Efficient.** Exists poly-time algorithm that given \(x \in \{0, 1\}^n \) and (a description of) \(f \in \mathcal{F}_n \), outputs \(f(x) \).
Proving GL for compressing functions

Definition 8

Function $f : \{0, 1\}^n \mapsto \{0, 1\}^n$ is $d(n)$ regular, if $|f^{-1}(y)| = d(n)$ for every $y \in f(\{0, 1\}^n)$.

Lemma 9

Let $f : \{0, 1\}^n \mapsto \{0, 1\}^n$ be a $d(n) \in 2^{\omega(\log n)}$ regular function, and let $\mathcal{H} = \{\mathcal{H}_n\}$ be an efficient family of Boolean pairwise independent functions over $\{0, 1\}^n$. Define $g : \{0, 1\}^n \times \mathcal{H}_n \mapsto \{0, 1\}^n \times \mathcal{H}_n$ as

$$g(x, h) = (f(x), h),$$

then $b(x, h) = h(x)$ is an hardcore predicate of g.

How does it relate to Goldreich-Levin?

$\{\mathcal{H}_n = \{b_r(\cdot) = b(r, \cdot)\}_{r \in \{0, 1\}^n}\}$ is (almost) pairwise independent.
Proving Lemma 9

The lemma follows by the next claim (\(?\))

Claim 10

\[\text{SD} \left((f(U_n), H, H(U_n)), (f(U_n), H, U_1) \right) = \text{neg}(n), \text{ where } H = H_n \text{ is uniformly distributed over } \mathcal{H}_n. \]

Proving the claim. For \(y \in f(\{0, 1\}^n) \), let \(X_y \) be uniformly distributed over \(f^{-1}(y) := \{ x \in \{0, 1\}^n : f(x) = y \} \). Compute

\[
\text{SD}((f(U_n), H, H(U_n)), (f(U_n), H, U_1)) \\
= \mathbb{E}_{y \leftarrow f(U_n)} \left[\text{SD}((f(U_n), H, H(U_n)|_{f(U_n)=y}, (f(U_n), H, U_1)|_{f(U_n)=y}) \right] \\
= \mathbb{E}_{y \leftarrow f(U_n)} \left[\text{SD}((y, H, H(X_y)), (y, H, U_1)) \right] \\
\leq \max_{y \in f(\{0, 1\}^n)} \text{SD}((y, H, H(X_y)), (y, H, U_1)) \\
= \max_{y \in f(\{0, 1\}^n)} \text{SD}((H, H(X_y)), (H, U_1))
\]
Proving Lemma 9, cont.

Since \(H_\infty(X_y) = \log(d(n)) \) for any \(y \in f(\{0, 1\}^n) \), the leftover hash lemma (Lemma 6) yields that

\[
\text{SD}((H, H(X_y)), (H, U_1)) \leq 2^{(1-H_\infty(X_y)-2)/2}
\]

\[
= 2^{(1-\log(d(n))/2} = \text{neg}(n). \square
\]
Section 2

Proving GL – The Computational Case
Theorem 11 (Goldreich-Levin)

For $f : \{0, 1\}^n \mapsto \{0, 1\}^n$, define $g : \{0, 1\}^n \times \{0, 1\}^n \mapsto \{0, 1\}^n \times \{0, 1\}^n$ as $g(x, r) = (f(x), r)$.

If f is one-way, then $b(x, r) := \langle x, r \rangle_2$ is an hardcore predicate of g.

Proof: Assume \exists PPT A, $p \in \text{poly}$ and infinite set $\mathcal{I} \subseteq \mathbb{N}$ with

$$\Pr[A(g(U_n, R_n)) = b(U_n, R_n)] \geq \frac{1}{2} + \frac{1}{p(n)},$$

(1)

for any $n \in \mathcal{I}$, where U_n and R_n are uniformly (and independently) distributed over $\{0, 1\}^n$.

We show \exists PPT B and $q \in \text{poly}$ with

$$\Pr_{y \leftarrow f(U_n)} [B(y) \in f^{-1}(y)] \geq \frac{1}{q(n)},$$

(2)

for every $n \in \mathcal{I}$. In the following fix $n \in \mathcal{I}$.
Focusing on a good set

Claim 12

There exists a set $S \subseteq \{0, 1\}^n$ with

1. $\frac{|S|}{2^n} \geq \frac{1}{2p(n)}$, and

2. $\Pr[A(f(x), R_n) = b(x, R_n)] \geq \frac{1}{2} + \frac{1}{2p(n)}$, $\forall x \in S$.

Proof: Let $S := \{x \in \{0, 1\}^n : \Pr[A(f(x), R_n) = b(x, R_n)] \geq \frac{1}{2} + \frac{1}{2p(n)}\}$.

$$
\Pr[A(g(U_n, R_n)) = b(U_n, R_n)] \leq \Pr[U_n \notin S] \cdot \left(\frac{1}{2} + \frac{1}{2p(n)}\right) + \Pr[U_n \in S] \\
\leq \left(\frac{1}{2} + \frac{1}{2p(n)}\right) + \Pr[U_n \in S]
$$

We conclude the theorem’s proof showing exist $q \in \text{poly}$ and PPT B:

$$\Pr[B(f(x)) \in f^{-1}(f(x))] \geq \frac{1}{q(n)}, \quad (3)$$

for every $x \in S$. In the following we fix $x \in S$.
The Perfect Case

\[\Pr [A(f(x), R_n) = b(x, R_n)] = 1 \]

In particular, \(A(f(x), e^i) = b(x, e^i) \) for every \(i \in [n] \), where
\[
e^i = (0, \ldots, 0, 1, 0, \ldots, 0) \quad \text{for } i-1 \leq i \leq n-1
\]

Hence, \(x_i = \langle x, e^i \rangle_2 = b(x, e^i) = A(f(x), e^i) \)

Algorithm 13 (Inverter B on input \(y \))

Return \((A(y, e^1), \ldots, A(y, e^n)) \).
Easy case

\[\Pr [A(f(x), R_n) = b(x, R_n)] \geq 1 - \text{neg}(n) \]

Fact 14

1. \(b(x, w) \oplus b(x, y) = b(x, w \oplus y) \) for every \(w, w, y \in \{0, 1\}^n \).
2. \(\forall r \in \{0, 1\}^n \), the rv \((R_n \oplus r) \) is uniformly distributed over \(\{0, 1\}^n \).

Hence, \(\forall i \in [n] \):

1. \(x_i = b(x, e^i) = b(x, r) \oplus b(x, r \oplus e^i) \) for every \(r \in \{0, 1\}^n \)
2. \(\Pr[A(f(x), R_n) = b(x, R_n) \land A(f(x), R_n \oplus e^i) = b(x, R_n \oplus e^i)] \geq 1 - \text{neg}(n) \)

Algorithm 15 (Inverter B on input y)

Return \((A(y, R_n) \oplus A(y, R_n \oplus e^1)), \ldots, A(y, R_n) \oplus A(y, R_n \oplus e^n))\).
Proving Fact 14

1. For \(x, y, w \in \{0, 1\}^n\):

\[
b(x, y) \oplus b(x, w) = \left(\bigoplus_{i=1}^{n} x_i \cdot y_i \right) \oplus \left(\bigoplus_{i=1}^{n} x_i \cdot w_i \right)
\]

\[
= \bigoplus_{i=1}^{n} x_i \cdot (y_i \oplus w_i)
\]

\[
= b(x, y \oplus w)
\]

- Similarly, for \(\mathcal{T} \subseteq \{0, 1\}^n\):

\[
\bigoplus_{t \in \mathcal{T}} b(x, t) = b(x, \bigoplus_{t \in \mathcal{T}} t)
\]

2. For \(r, y \in \{0, 1\}^n\):

\[
\Pr [R_n \oplus r = y] = \Pr [R_n = y \oplus r] = 2^{-n}
\]
Intermediate Case

\[\Pr [A(f(x), R_n) = b(x, R_n)] \geq \frac{3}{4} + \frac{1}{q(n)} \]

For any \(i \in [n] \)

\[
\Pr[A(f(x), R_n) \oplus A(f(x), R_n \oplus e^i) = x_i] \\
\geq \Pr[A(f(x), R_n) = b(x, R_n) \land A(f(x), R_n \oplus e^i) = b(x, R_n \oplus e^i)] \\
\geq 1 - \left(1 - \left(\frac{3}{4} + \frac{1}{q(n)} \right) \right) - \left(1 - \left(\frac{3}{4} + \frac{1}{q(n)} \right) \right) = \frac{1}{2} + \frac{2}{q(n)}
\]

Algorithm 16 (Inverter B on input \(y \in \{0, 1\}^n \))

1. For every \(i \in [n] \)
 1.1 Sample \(r^1, \ldots, r^v \in \{0, 1\}^n \) uniformly at random
 1.2 Let \(m_i = \text{maj}_{j \in [v]} \{ (A(y, r^j) \oplus A(y, r^j \oplus e^j) \} \)
2. Output \((m_1, \ldots, m_n)\)
B’s Success Provability

The following claim holds for “large enough” $v = v(n) \in \text{poly}(n)$.

Claim 17

For every $i \in [n]$, it holds that $\Pr[m_i = x_i] \geq 1 - \text{neg}(n)$.

Proof: For $j \in [v]$, let the indicator rv W^j be 1, iff
$A(f(x), r^j) \oplus A(f(x), r^j \oplus e^j) = x_i$.

We want to lowerbound $\Pr\left[\sum_{j=1}^{v} W^j > \frac{v}{2}\right]$.

- The W^j are iids and $E[W^j] \geq \frac{1}{2} + \frac{2}{q(n)}$ for every $j \in [v]

Lemma 18 (Hoeffding’s inequality)

Let X^1, \ldots, X^v be iids over $[0, 1]$ with expectation μ. Then,
$\Pr\left[|\frac{1}{v}\sum_{j=1}^{v} X^j - \mu| \geq \varepsilon\right] \leq 2 \cdot \exp(-2\varepsilon^2 v)$ for every $\varepsilon > 0$.

We complete the proof taking $X^j = W^j$, $\varepsilon = 1/4q(n)$ and $v \in \omega(\log(n) \cdot q(n)^2)$.
The actual (hard) case

\[\Pr [A(f(x), R_n) = b(x, R_n)] \geq \frac{1}{2} + \frac{1}{q(n)} \]

What goes wrong?

\[\Pr [A(f(x), R_n) \oplus A(f(x), R_n \oplus e_i) = x_i] \geq \frac{2}{q(n)} \]

Hence, using a random guess does better than using \(A :-< \)

Idea: guess the values of \(\{b(x, r^1), \ldots, b(x, r^v)\} \)

(instead of calling \(\{A(f(x), r^1), \ldots, A(f(x), r^v)\} \))

Problem: negligible success probability

Solution: choose the samples in a correlated manner
Algorithm B

- Fix $\ell = \ell(n)$ (will be $O(\log n)$) and set $v = 2^\ell - 1$.
- In the following $\mathcal{L} \subseteq [\ell]$ stands for a non empty choice.

Algorithm 19 (Inverter B on $y = f(x) \in \{0, 1\}^n$)

1. Sample uniformly (and independently) $t^1, \ldots, t^\ell \in \{0, 1\}^n$
2. Guess the value of $\{b(x, t^i)\}_{i \in [\ell]}$
3. For all $\mathcal{L} \subseteq [\ell]$: set $r^\mathcal{L} = \bigoplus_{i \in \mathcal{L}} t^i$ and compute $b(x, r^\mathcal{L}) = \bigoplus_{i \in \mathcal{L}} b(x, t^i)$.
4. For all $i \in [n]$, let $m_i = \text{maj}_{\mathcal{L} \subseteq [\ell]} \{A(f(x), r^\mathcal{L} \oplus e^i) \oplus b(x, r^\mathcal{L})\}$
5. Output (m_1, \ldots, m_n)

- Fix $i \in [n]$, and let $W^\mathcal{L}$ be 1 iff $A(f(x), r^\mathcal{L} \oplus e^i) \oplus b(x, r^\mathcal{L}) = x_i$.
- We want to lowerbound $\Pr\left[\sum_{\mathcal{L} \subseteq [\ell]} W^\mathcal{L} > \frac{v}{2}\right]$
- Problem: the $W^\mathcal{L}$’s are dependent!
Analyzing B’s success probability

1. Let T^1, \ldots, T^ℓ be iid and uniform over $\{0, 1\}^n$.
2. For $\mathcal{L} \subseteq [\ell]$, let $R^\mathcal{L} = \bigoplus_{i \in \mathcal{L}} T^i$.

Claim 20

1. $\forall \mathcal{L} \subseteq [\ell], R^\mathcal{L}$ is uniformly distributed over $\{0, 1\}^n$.
2. $\forall w, w' \in \{0, 1\}^n$ and $\mathcal{L} \neq \mathcal{L}' \subseteq [\ell]$, it holds that
 $\Pr[R^\mathcal{L} = w \land R^{\mathcal{L}'} = w'] = \Pr[R^\mathcal{L} = w] \cdot \Pr[R^{\mathcal{L}'} = w'] = 2^{-2n}$.

Proof: (1) is clear, we prove (2) in the next slide.
Proving Fact 20(2)

Assume wlg. that $1 \in (\mathcal{L}' \setminus \mathcal{L})$.

$$
\Pr[\mathcal{R}^\mathcal{L} = w \land \mathcal{R}^\mathcal{L}' = w']
= \mathbb{E}_{(t^2, \ldots, t^\ell) \leftarrow \{0,1\}^{(\ell-1)n}} \left[\Pr[\mathcal{R}^\mathcal{L} = w \land \mathcal{R}^\mathcal{L}' = w' \mid (T^2, \ldots, T^\ell) = (t^2, \ldots, t^\ell)] \right]
= \sum_{(t^2, \ldots, t^\ell) : (\bigoplus_{i \in \mathcal{L}} t^i) = w} \Pr[(T^2, \ldots, T^\ell) = (t^2, \ldots, t^\ell)] \cdot \Pr[\mathcal{R}^\mathcal{L}' = w' \mid (T^2, \ldots, T^\ell) = (t^2, \ldots, t^\ell)]
= \sum_{(t^2, \ldots, t^\ell) : (\bigoplus_{i \in \mathcal{L}} t^i) = w} \Pr[(T^2, \ldots, T^\ell) = (t^2, \ldots, t^\ell)] \cdot 2^{-n}
= 2^{-n} \cdot 2^{-n} = \Pr[\mathcal{R}^\mathcal{L} = w] \cdot \Pr[\mathcal{R}^\mathcal{L}' = w'].
$$

\qed
Pairwise independence variables

Definition 21 (pairwise independent random variables)

A sequence of random variables X^1, \ldots, X^v is pairwise independent, if $\forall i \neq j \in [v]$ and $\forall a, b$, it holds that

$$\text{Pr}[X^i = a \land X^j = b] = \text{Pr}[X^i = a] \cdot \text{Pr}[X^j = b]$$

- By Claim 20, r^L and $r^{L'}$ (chosen by B) are pairwise independent for every $L \neq L' \subseteq [\ell]$.
- Hence, also W^L and $W^{L'}$ are.
 (Recall, W^L is 1 iff $A(f(x), r^L \oplus e^i) \oplus b(x, r^L) = x_i$)

Lemma 22 (Chebyshev’s inequality)

Let X^1, \ldots, X^v be pairwise-independent random variables with expectation μ and variance σ^2. Then, for every $\varepsilon > 0$,

$$\text{Pr} \left[\left| \frac{1}{v} \sum_{j=1}^{v} X^j - \mu \right| \geq \varepsilon \right] \leq \frac{\sigma^2}{\varepsilon^2 v}$$
B’s success provability, cont.

Assuming that B always guesses $\{b(x, t^i)\}$ correctly, then for every $\mathcal{L} \subseteq [\ell]$

- $b(x, r^\mathcal{L})$ (set to $\bigoplus_{i \in \mathcal{L}} b(x, t^i)$) is computed correctly.
- $E[W^\mathcal{L}] \geq \frac{1}{2} + \frac{1}{q(n)}$
- $\text{Var}(W^\mathcal{L}) := E[W^\mathcal{L}]^2 - E[(W^\mathcal{L})^2] \leq 1$

Taking $\epsilon = 1/2q(n)$ and $v = 2n/\epsilon^2$ (i.e., $\ell = \lceil \log(2n/\epsilon^2) \rceil$), Lemma 22 yields that

$$\Pr[m_i = x_i] = \Pr \left[\frac{\sum_{\mathcal{L} \subseteq [\ell]} W^\mathcal{L}}{v} > \frac{1}{2} \right] \geq 1 - \frac{1}{2n} \quad (4)$$

Hence, by a union bound, B outputs x with probability $\frac{1}{2}$.

Taking the guessing into account, yields that B outputs x with probability at least $2^{-\ell}/2 \in \Omega(1/nq(n)^2)$.
Reflections

- **Hardcore functions:**

 Similar ideas allows to output \(\log n \) “pseudorandom bits"

- **Alternative proof for the LHL:**

 Let \(X \) be a rv with over \(\{0, 1\}^n \) with \(H_\infty(X) \geq t \), and assume

 \[
 \text{SD}((R_n, \langle R_n, X \rangle_2), (R_n, U_1)) > \alpha = 2^{-c \cdot t}
 \]
 for some universal \(c > 0 \).

 \[\implies\] Exists (a possibly inefficient) algorithm \(D \) that distinguishes

 \((R_n, \langle R_n, X \rangle_2) \) from \((R_n, U_1) \) with advantage \(\alpha \)

 \[\implies\] Exists algorithm \(A \) that predicts \(\langle R_n, X \rangle_2 \) given \(R_n \) with prob \(\frac{1}{2} + \alpha \)

 \[\implies\] (by GL) Exists algorithm \(B \) that guesses \(X \) from nothing, with prob

 \(\alpha^{O(1)} > 2^{-t} \)
Reflections cont.

- List decoding:
 An encoder $C : \{0, 1\}^n \mapsto \{0, 1\}^m$ and a decoder D, such that the following holds for any $x \in \{0, 1\}^n$ and c of hamming distance $\frac{1}{2} - \delta$ from $C(x)$:
 $D(c, \delta)$ outputs a list of size at most $\text{poly}(1/\delta)$ that whp. contains x

 The code we used here is known as the Hadamard code

- LPN - learning parity with noise:
 Find x given polynomially many samples of $\langle x, R_n \rangle_2 + N$, where $\Pr[N = 1] \leq \frac{1}{2} - \delta$.

 The difference comparing to Goldreich-Levin – no control over the R_n's.