Application of Information Theory, Lecture 6
Differential Entropy and Other Entropy Measures

Handout Mode

Iftach Haitner

Tel Aviv University.

December 05, 2019
Part I

Differential Entropy
Entropy of continues random variable

- Entropy of discrete random variable: $H(X) = - \sum_i p_i \log p_i$
- Also used when X has infinite support (entropy might be infinite)
- Continues random variable is defined by its density function: $f : \mathbb{R} \mapsto \mathbb{R}^+$, for which $\int_{\mathbb{R}} f(x)dx = 1$.
- $F_X(x) := \Pr [X \leq x] = \int_{-\infty}^{x} f(x)dx$
- $E X = \int x \cdot f(x)dx$ and $V X = \int x^2 \cdot f(x)dx - (E X)^2$
- Examples: $X \sim [0, 1]$, $X \sim N(0, 1)$
- $H(X)$ must be infinite! it takes infinite number of bits to describe X
- The differential entropy of X is defined by $h(X) = - \int f(x) \log f(x)dx$.
- We focus on cases where $h(X)$ is well defined.
- Since h is a function of the density function, we sometimes write $h(f)$
- If not stated otherwise, we integrate over \mathbb{R}
Intuition for definition of h

Let X^Δ be rounding of X for precision Δ:

$$X^\Delta \sim (\ldots, p_{-2}, p_{-1}, p_0, p_1, p_2, \ldots),$$

where $p_i = \int_{i \cdot \Delta}^{(i+1) \cdot \Delta} f(x) dx = f(x_i) \cdot \Delta$

for some $x_i \in [i \cdot \Delta, (i + 1) \cdot \Delta]$ (?)

$$H(X^\Delta) = - \sum_{i=-\infty}^{\infty} p_i \log p_i$$

$$H(X^\Delta) = - \sum_{i=-\infty}^{\infty} f(x_i) \cdot \Delta \cdot \log(f(x_i) \cdot \Delta) = - \sum_{i=-\infty}^{\infty} f(x_i) \cdot \Delta \cdot (\log f(x_i) + \log \Delta)$$

$$= - \sum_{i=-\infty}^{\infty} f(x_i) \cdot \log f(x_i) \cdot \Delta - \left(\sum_{i=-\infty}^{\infty} f(x_i) \cdot \Delta \right) \log \Delta$$

$$\lim_{\Delta \to 0} H(X^\Delta) = h(X) - \lim_{\Delta \to 0} \log \Delta$$

Hence, $\lim_{\Delta \to 0}(H(X^\Delta) + \log \Delta) = h(x)$

Intuitively, $h(X)$ is the entropy of X plus const $(\lim_{\Delta \to 0} - \log \Delta)$.

Note that $\lim_{\Delta \to 0} - \log \Delta = \infty$
Properties of the entropy function

\[h(X) = -\int f(x) \log f(x) \, dx \]

- **Shift invariant:** \(h(f) = h(g) \) for \(g(x) = f(x + a) \)
- \(h(f) \) might be infinite
- For any discrete \(X \) exists \(f \) with \(h(f) = H(X) \):
 for \(X \sim (p_1, p_2, \ldots) \), let \(f_{\tilde{X}}(x) = p_i \) for all \(x \in [i, i + 1] \)
- \(h(X) \) might be negative
- Example: \(X \sim [0, a] \) – \(f(x) = \frac{1}{a} \) on \([0, a] \)
 \[-\int f(x) \log f(x) \, dx = -\log \frac{1}{a} = \log a \]. Negative for \(a < 1 \).
- \(h(X) \) should be interpreted as the uncertainty up to a certain constant
- Used for comparing two distributions
Common distribution (in nature)

- The uniform distribution: $X \sim [a, b]$
- Normal (Gaussian) distribution: (we focus on $E = 0$ and $V = 1$)
 $X \sim N(0, 1): f(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{-x^2/2}$
- Boltzmann (Gibbs) distribution:
 $X \in \{E_1, E_2, \ldots, E_m\}$, $\Pr [X = E_i] = C \cdot e^{-\beta E_i}$ for $\beta > 0$ (the distribution constant) and $C = 1/\sum_i e^{-\beta E_i}$.
 - Describes a (discrete) physical system that can take states $\{1, \ldots, m\}$ with energies E_1, \ldots, E_m.
 - Probability is inverse to the energy

Why are these distributions so common?
- What is common to these distributions?
Second law of thermodynamics

- The entropy of a closed physical system never decreases.
- If we wait enough time, the system tends to be in maximal entropy.
- If there are constraints, it tends to be in maximal entropy under this constraint.
- This suggests that distributions that are common in nature, are distributions of maximal entropy, under some constraints.
The normal distribution

- \(X \sim N(0, 1) \):
 \[
 f(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{-x^2/2}
 \]

- Why is it so common?
- Answer: the central limit theorem (CLT):

 Let \(X_1, \ldots, X_n \) be iid with \(E X_i = 0 \) and \(V X_i = 1 \). Then
 \[
 \lim_{n \to \infty} \frac{\sum_i X_i}{\sqrt{n}} = N(0, 1).
 \]

- But why does it converge to \(N(0, 1) \)??
- CLT holds also in many other variants: not id, not fully independent, ...
- We know that \(E \frac{\sum_i X_i}{\sqrt{n}} = 0 \) and \(V \frac{\sum_i X_i}{\sqrt{n}} = 1 \), but it could have converge to any other distribution with these constraints.

- The reason is that \(N(0, 1) \) has the highest entropy among all distribution with \(E = 0 \) and \(V = 1 \).
- CLT and the normal distribution where known and studied way before Shannon, yet this striking property was not known until his theory.
The normal distribution, cont.

Theorem 1

\[h(X) \leq h(N(0, 1)), \text{ for any } v \text{ X with } \sqrt{V} X = 1. \]

- Among the distributions of \(V = 1 \), the distribution \(N(0, 1) \) has maximal entropy.
- Generalizes to any variance:
 \[h(X) \leq h(N(0, V(X))) = \frac{1}{2} \cdot \log(2\pi e) \cdot V(X) \]

Let \(g \) be a density function with \(\int g(x)x^2dx = 1 \), and let \(f(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{-x^2/2} \).

We will show that

1. \[-\int g(x) \log g(x)dx \leq -\int g(x) \log f(x)dx \]
2. \[-\int g(x) \log f(x)dx = -\int f(x) \log f(x)dx \]
$- \int g(x) \log g(x) dx \leq - \int g(x) \log f(x) dx$

Claim 2

$- \int g(x) \log g(x) dx \leq - \int g(x) \log q(x) dx$ for any two density functions q, g.

Proof:

- **Jensen:** For any function t and density function λ:

 $\int \lambda(x) \log t(x) \leq \log \int \lambda(x) t(x) dx$

- Assume for simplicity that $g(x) > 0$ for all x.

- By Jensen, $\int g(x) \log \frac{q(x)}{g(x)} \leq \log \int g(x) \frac{q(x)}{g(x)} dx = \log 1 = 0$

- Hence, $- \int g(x) \log g(x) \leq - \int g(x) \log q(x)$
\[- \int g(x) \log f(x) \, dx = - \int f(x) \log f(x) \, dx \]

Claim 3

Exists $c \in \mathbb{R}$ such that $- \int g(x) \log f(x) \, dx = c$ for any density function g with $\int g(x)x^2 \, dx = 1$.

Hence, $- \int g(x) \log f(x) \, dx = - \int f(x) \log f(x) \, dx$.

Proof:

\[
- \int g(x) \log f(x) \, dx = - \int g(x) \log \left(\frac{1}{\sqrt{2\pi}} \cdot e^{-x^2/2} \right) \, dx \\
= - \int g(x) \left(\log \frac{1}{\sqrt{2\pi}} - \frac{x^2}{2} \cdot \log e \right) \, dx \\
= - \log \frac{1}{\sqrt{2\pi}} \int g(x) \, dx + \frac{\log e}{2} \int g(x)x^2 \, dx \\
= - \log \frac{1}{\sqrt{2\pi}} + \frac{\log e}{2}.
\]
The Boltzmann distribution

- States \(\{1, \ldots, m\} \), energies \(E_1, \ldots, E_m \).
- \(\text{Pr} [X = E_i] = C \cdot e^{-\beta E_i} \) for \(\beta > 0 \) and \(C = 1 / \sum_i e^{-\beta E_i} \).
- We will denote it by \(\sim B(\beta, E_1, \ldots, E_m) \).
- Like the exponential distribution (i.e., \(f(x) = \lambda e^{-\lambda x} \)), but discrete.
 - Describes a (discrete) physical system that can take states \(\{1, \ldots, m\} \) with energies \(E_1, \ldots, E_m \).
 - Probability is inverse to energy.

Theorem 4

Let \(X \sim B(\beta, E_1, \ldots, E_m) \). Then \(H(Y) \leq H(X) \) for any rv \(Y \) over \(\{E_1, \ldots, E_m\} \), with \(EY = EX \).

- The Boltzmann distribution is maximal among all distributions of the same energy.
Proving Theorem 4

- **X** ~ $B(\beta, E_1, \ldots, E_m)$ and **E Y = E X**
- Let **X** ~ (p_1, \ldots, p_m) and **Y** ~ (q_1, \ldots, q_m) over $\{E_1, \ldots, E_m\}$.
- $H(Y) \leq \sum_i q_i \log p_i$ (Q3 in Handout 1)
- Let $C = 1/\sum_i e^{-\beta E_i}$.

Then
\[
\sum_i q_i \log p_i = \sum_i q_i \log (C \cdot e^{-\beta E_i})
= \sum_i q_i \log C - \sum_i q_i \beta E_i \cdot \log e
= \log C - \beta \cdot \log e \cdot \sum_i q_i E_i
= \log C - \beta \cdot \log e \cdot E_X
\]

- Hence, $\sum_i q_i \log p_i = \sum_i p_i \log p_i$. ☐
The uniform distribution

- $X \sim [a, b]$.
- $E X = \frac{1}{2} (a + b)$ and $V X = \frac{1}{12} (b - a)^2$
- What come to mind when saying “X takes values in $[0, 1]$”.

Theorem 5

$h(X) \leq h(\sim [a, b])$, for any RV with $\text{Supp}(X) \subseteq [a, b]$.

Proof: HW
Using diff. entropy to bound discrete entropy

Proposition 6

Let \(X \sim (p_1, p_2, \ldots) \), then \(H(X) \leq \log \frac{2\pi e}{2} \cdot (V(X) + \frac{1}{12}) \)

We assume wlg. that \(p_i = \Pr[X = i] \).

- Let \(U \sim [0, 1] \), let \(\tilde{X} = X + U \) and let \(f_{\tilde{X}} \) be the density function of \(\tilde{X} \).

\[
H(X) = -\sum_{i=1}^{\infty} p_i \log p_i \\
= -\sum_{i=1}^{\infty} \left(\int_{i}^{i+1} f_{\tilde{X}}(x) \, dx \right) \cdot \log p_i = -\sum_{i=1}^{\infty} \int_{i}^{i+1} f_{\tilde{X}}(x) \log p_i \, dx \\
= -\sum_{i=1}^{\infty} \int_{i}^{i+1} f_{\tilde{X}}(x) \log f_{\tilde{X}}(x) \, dx \quad \text{(} f_{\tilde{X}}(x) = p_i \text{ for all } x \in [i, i + 1] \text{)} \\
= -\int_{1}^{\infty} f_{\tilde{X}}(x) \log f_{\tilde{X}}(x) \, dx \\
= h(\tilde{X})
\]
Using diff. entropy to bound discrete entropy, cont.

Hence,

\[H(X) = h(\tilde{X}) \]
\[\leq \frac{1}{2} \log(2\pi e) V(\tilde{X}) \]
\[= \frac{1}{2} \log(2\pi e) (V(X) + V(U)) \]
\[= \frac{\log 2\pi e}{2} \cdot \left(\left(\sum_{i=1}^{\infty} p_i \cdot i^2 - \left(\sum_{i=1}^{\infty} p_i \cdot i \right)^2 \right) + \frac{1}{12} \right) \]

How good is this bound?

Let \(X \sim (\frac{1}{2}, \frac{1}{2}) \). Hence, \(V[X] = \frac{1}{4} \) and \(H(X) = 1 \).

Proposition 6 grantees that \(H(X) \leq \frac{\log 2\pi e}{2} \left(\frac{1}{4} + \frac{1}{12} \right) \sim 1.255 \)
Part II

Statistical Distance
Statistical distance

Let \(p = (p_1, \ldots, p_m) \) and \(q = (q_1, \ldots, q_m) \) be distributions over \([m]\).

Their statistical distance (also known as variation distance) is defined by

\[
SD(p, q) := \frac{1}{2} \sum_{i \in [m]} |p_i - q_i|
\]

This is simply the \(L_1 \) norm between the distribution vectors.

We will soon see another “distance” measures for distributions next lecture.

For \(X \sim p \) and \(Y \sim q \), let \(SD(X, Y) = SD(p, q) \).

Claim (HW): \(SD(p, q) = \max_{S \subseteq [m]} \left(\sum_{i \in S} p_i - \sum_{i \in S} q_i \right) \)

Hence, \(SD(p, q) = \max_D \left(\Pr_{X \sim p} [D(X) = 1] - \Pr_{X \sim q} [D(X) = 1] \right) \)

Interpretation

Claim (data processing): \(SD(f(X), f(Y)) \leq SD(X, Y) \) for any function \(f \).
Distance from the uniform distribution

- Let X be rv over $[m]$
- $H(X) \leq \log m$
- $H(X) = \log m \iff X$ is uniform over $[m]$

Theorem 7 (next lecture)

Let X rv over $[m]$. Assume $H(X) \geq \log m - \varepsilon$, then

$$\text{SD}(X, \sim [m]) \leq \sqrt{\varepsilon \cdot \frac{\ln 2}{2}} = O(\sqrt{\varepsilon})$$
Part III

Other Entropy Measures
Other entropy measures

Let $X \sim p$ be a random variable over \mathcal{X}.

- Recall that Shannon entropy of X is
 \[H(X) = \sum_{x \in \mathcal{X}} -p(x) \cdot \log p(x) = E_X [-\log p(X)] = E_X [H_X(X)] \]

- Max entropy of X is $H_0(X) = \log |\text{Supp}(X)|$

- Min entropy of X is $H_\infty(X) = \min_{x \in \mathcal{X}} \{-\log p(x)\} = -\log \max_{x \in \mathcal{X}} \{p(x)\}$

- Collision probability of X is $\text{CP}(X) = \sum_{x \in \mathcal{X}} p(x)^2 = \|p\|_2^2$
 Probability of collision when drawing two independent samples from X

- Collision entropy/Renyi entropy of X is $H_2(X) = -\log \text{CP}(X)$

- For $\alpha \neq 1 \in \mathbb{N}$ — $H_\alpha = \frac{1}{1-\alpha} \log \left(\sum_{i=1}^n p_i^\alpha \right) = \frac{\alpha}{1-\alpha} \log(\|p\|_\alpha)$

- $H_\infty(X) \leq H_2(X) \leq H(X) \leq H_0(X)$ (Jensen)
 Equality iff X is uniform over \mathcal{X}

- For instance, $\text{CP}(X) \leq \sum_{x} p(x) \max_{x'} p(x') = \max_{x'} p(x')$. Hence, $H_2(X) \geq -\log \max_{x'} p(x') = H_\infty(X)$.

- Claim: $H_2(X) \leq 2 \cdot H_\infty(X)$

- Proof: $\text{CP}(X) \geq (\max_{x'} p(x'))^2$. Hence, $-\log \text{CP}(X) \leq -2 H_\infty(X)$
Other entropy measures, cont

- No simple chain rule.
- Let $X = \perp$ with probability $\frac{1}{2}$ and uniform over $\{0, 1\}^n$ otherwise, and let Y be indicator for $X = \perp$.
- $H_\infty(X|Y = 1) = 0$ and $H_\infty(X|Y = 0) = n$. But $H_\infty(X) = 1$.
Section 1

Shannon to min entropy
Shannon to Min entropy

Given rv $X \sim p$, let X^n denote n independent copies of X, and let $p^n(x_1 \ldots, x_n) = \prod_{i=1}^{n} p(x_i)$.

Lemma 8

Let $X \sim p$ and let $\varepsilon > 0$. Then $\Pr \left[-\log p^n(X^n) \leq n \cdot (H(X) - \varepsilon) \right] < 2 \cdot e^{-2\varepsilon^2 n}$.

▶ Compare to $-\log p^n(x) \leq n \cdot H_\infty(X)$, for any $x \in \text{Supp}(X^n)$

Corollary 9

\exists rv W that is $(2 \cdot e^{-2\varepsilon^2 n})$-close to X^n, and $H_\infty(W) \geq n(H(X) - \varepsilon)$.

Proof: $W = X^n$ if $X^n \in A_{n,\varepsilon} := \{x \in \text{Supp}(X^n) : 2^{-n(H(X)+\varepsilon)} \leq p^n(x) \leq 2^{-n(H(X)-\varepsilon)}\}$, and “well spread” outside $\text{Supp}(X^n)$ otherwise.
Shannon to min entropy, proof

\[p^n(x_1 \ldots, x_n) = \prod_{i=1}^{n} p(x_i). \]

Lemma 10 (Restatment of Lemma 8)

Let \(X \sim p \) and let \(\varepsilon > 0 \). Then \(\Pr \left[-\log p^n(X^n) \leq n \cdot (H(X) - \varepsilon) \right] < 2 \cdot e^{-2\varepsilon^2 n}. \)

Proof: (quantitative) AEP.

Proposition 11 (Hoeffding’s inequality)

Let \(Z_1, \ldots, Z_n \) be iids over \([0, 1]\) with expectation \(\mu \). Then,

\[\Pr \left[\left| \frac{1}{n} \sum_{i=1}^{n} Z_i - \mu \right| \geq \varepsilon \right] \leq 2 \cdot e^{-2\varepsilon^2 n} \text{ for every } \varepsilon > 0. \]

- \(A_{n,\varepsilon} := \{ x \in \text{Supp}(X^n) : 2^{-n(H(X)+\varepsilon)} \leq p^n(x) \leq 2^{-n(H(X)-\varepsilon)} \} \)
- \(-\log p^n(x) \geq n \cdot (H(X) - \varepsilon) \) for any \(x \in A_{n,\varepsilon} \)
- Taking \(Z_i = -\log p(X_i) \) and \(\mu = H(X_1) \), it follows that

\[\Pr \left[X^n \notin A_{n,\varepsilon} \right] = \Pr \left[\left| n\mu - \sum_{i} Z_i \right| \geq \varepsilon n \right] = \Pr \left[\left| \mu - \frac{1}{n} \sum_{i} Z_i \right| \geq \varepsilon \right] \leq 2 \cdot e^{-2\varepsilon^2 n}. \]
Shannon to Min entropy, conditional version

Lemma 12

Let \((X, Y) \sim p\) let \(\varepsilon > 0\). Then

\[
\Pr_{(x^n, y^n) \leftarrow (X, Y)^n} \left[-\log p^n_{X|Y}(x^n|y^n) \leq n \cdot (H(X|Y) - \varepsilon) \right] < 2 \cdot e^{-2\varepsilon^2 n}.
\]

Proof: same proof, letting \(Z_i = \log p_{X|Y}(X_i|Y_i)\)

Corollary 13

\exists rv \(W\) over \(X^n \times Y^n\) such that

1. \(\text{SD}(W, (X, Y)^n) \leq 2 \cdot e^{-2\varepsilon^2 n}\).
2. \(\text{SD}(W_{Y^n}, Y^n) = 0\), and
3. \(H_\infty(W_{X^n}|W_{Y^n} = y) \geq n \cdot (H(X|Y) - \varepsilon)\), for any \(y \in \text{Supp}(Y^n)\)

Proof: ?
Section 2

Renyi-entropy to Uniform Distribution
Extraction

Goal: given a random variable over \(\{0, 1\}^n \), with \(k \) bits of “entropy”, extract close to \(k \) uniform bits.

- Let \(U_t \sim \{0, 1\}^t \).
- Deterministic extractors:
 \[\text{Ext}: \{0, 1\}^n \mapsto \{0, 1\}^m \], such that for any \(X \) over \(\{0, 1\}^n \) with \(H_\infty(X) \geq k \) it holds that \(\text{SD}(\text{Ext}(X), U_m) \leq \varepsilon \).
- Impossible to achieve even for \(k = n - 1 \) and \(m = 1! \)
- Seeded extractors:
 \[\text{Ext}: \{0, 1\}^n \times \{0, 1\}^d \mapsto \{0, 1\}^m \], such that for any \(X \) over \(\{0, 1\}^n \) with \(H_\infty(X) \geq k \) it holds that \(\text{SD}((\text{Ext}(X, U_d), U_d), (U_m, U_d)) \leq \varepsilon \).
- Typically, we would like \(d \) to be us small as possible.
- Very useful concept
Pairwise independent hashing

Definition 14 (pairwise independent function family)

A function family \(G = \{ g: \mathcal{D} \rightarrow \mathcal{R} \} \) is pairwise independent, if \(\forall x \neq x' \in \mathcal{D} \) and \(y, y' \in \mathcal{R} \), it holds that \(\Pr_{g \leftarrow G} [g(x) = y \land g(x') = y'] = \left(\frac{1}{|\mathcal{R}|} \right)^2 \).

- Example: for \(\mathcal{D} = \{0, 1\}^n \) and \(\mathcal{R} = \{0, 1\}^m \) let \(G = \{(A, b) \in \{0, 1\}^{m \times n} \times \{0, 1\}^m \} \) with \((A, b)(x) = A \times x + b\). (additions are over \(\mathbb{F}(2) \), e.g., \(\oplus \))

- 2-universal families: \(\Pr_{g \leftarrow G} [g(x) = g(x')] = \frac{1}{|\mathcal{R}|} \).

- Example for universal family that is not pairwise independent?

- Many-wise independent
Leftover hash lemma

Lemma 15 (leftover hash lemma)
Let X be a rv over $\{0, 1\}^n$ with $H_2(X) \geq k$, let $G = \{g: \{0, 1\}^n \mapsto \{0, 1\}^m\}$ be 2-universal, and $G \leftarrow G$. Then $SD((G, G(X)), (G, \sim \{0, 1\}^m)) \leq \frac{1}{2} \cdot 2^{(m-k)/2}$.

Lemma 16
Let p be dist. over \mathcal{U} with $CP(p) \leq \frac{1+\delta}{|\mathcal{U}|}$, then $SD(p, \sim \mathcal{U}) \leq \frac{\sqrt{\delta}}{2}$.

Proof: Let q be the uniform distribution over \mathcal{U}.

- $\|p - q\|^2_2 = \sum_{u \in \mathcal{U}} (p(u) - q(u))^2 = \|p\|^2_2 + \|q\|^2_2 - 2\langle p, q \rangle = CP(p) - \frac{1}{|\mathcal{U}|} \leq \frac{\delta}{|\mathcal{U}|}$
- Chebyshev Sum Inequality: $(\sum_{i=1}^n a_i)^2 \leq n \cdot \sum_{i=1}^n a_i^2$
- Hence, $\|p - q\|^2_1 \leq |\mathcal{U}| \cdot \|p - q\|^2_2$
- Thus, $SD(p, q) = \frac{1}{2} \|p - q\|_1 \leq \frac{\sqrt{\delta}}{2}$. □

To deuce the proof of Lemma 15, we notice that $CP(G, G(X)) \leq \frac{1}{|G|} \cdot (2^{-k} + 2^{-m}) = \frac{1+2^{m-k}}{|G| \cdot 2^m} = \frac{1+2^{m-k}}{|G \times \{0,1\}^m|}$.