Advance Course on Foundation of Cryptography, Lecture 4
Black-Box Impossibilities
The Basics

Handout Mode

Benny Applebaum & Iftach Haitner, Tel Aviv University

Tel Aviv University.

April 27, 2017
Talk plan

- Motivation and definition
- Random permutations are hard to invert
- Impossibility for Basing OWP on OWF
- Impossibility for basing efficient PRG on OWF
Motivating example: Basing Key-Agreement on OWFs

- Key-Agreement protocols (KA) can be based on the existence of TDP, RSA or discrete log assumptions, and ...
- We don’t know how to base KA on the existence of OWFs/OWPs.
- Can we base KA on OWFs/OWPs?
- Proving unconditional negative result seems beyond reach.
 Assume RSA assumption holds.
 \[\Rightarrow\] key-agreement protocols exist.
 \[\Rightarrow\] OWFs imply the existence of key-agreement protocols in a trivial sense.
Definition 1 (A fully Black-box construction of B from A)

Black-box construction: Oracle-aided PPT C such that C^f implements B for any algorithm f implementing A.

Black-box proof of security: Oracle-aided PPT R such that $R^{f,\text{Brk}}$ breaks f, for any algorithms f implementing A, and Brk breaking C^f.

- Fully-black-box constructions relativize: hold relative to any oracle.
- Most constructions in cryptography are (fully) black-box, e.g., pseudorandom generator from OWF.
- Some “non black-box” techniques apply in restricted settings.
Proving BB impossibility result

Assume \exists fully-BB construction (C, R) of a KA from OWP.
Section 1

Random Permutations are Hard To invert
Some preliminaries

- \(k! := 1 \cdot 2 \cdot 3 \cdots k \)
- \(\binom{k}{a} := \frac{k!}{a! \cdot (k-a)!} \)
- \(k! = \binom{k}{a} \cdot a! \cdot (k-a)! \)
- \(k! \geq \left(\frac{k}{e} \right)^a \) and \(\binom{k}{a} \leq \left(\frac{ek}{a} \right)^a \)

Let \(N = 2^n \).

- How many bits it takes to describe \(S \subseteq \{0, 1\}^n \) of (known) size \(a \)?
 There are \(\binom{N}{a} \) such sets, so it takes \(\log(\binom{N}{a}) \) bits.

Let \(\Pi_n \) be the set of all permutations over \(\{0, 1\}^n \).

- How many bits it takes to describe \(\pi \in \Pi_n \)?
 \(|\Pi_n| = N! \), so it takes \(\log(N!) \) bits.

What is the number of of \(M \)-size oracle-circuits?

Claim 2 (HW 1)

Number of \(M \)-size oracle-circuits mapping \(n \)-bit strings to \(n \)-bit strings, with oracle access to a function \(n \)-bit strings to \(n \)-bit strings, is at most \(2^{2M+(M+1)n\log(Mn+n)+1} \).
Notation

For circuit (or deterministic algorithm) D and $f : \{0, 1\}^n \mapsto \{0, 1\}^n$, let

- $\text{Inv}_f^D(y) = \begin{cases} 1, & D(y) \in f^{-1}(y), \\ 0, & \text{ow.} \end{cases}$

- $\text{Inv}^D(f) = E_{x \leftarrow \{0,1\}^n} [\text{Inv}_f^D(f(x))]$.
Random permutations are hard to invert

Theorem 3 (Gennaro-Tevisan, ’01)

For large enough \(n \in \mathbb{N} \) and \(2^{n/5} \)-query circuit \(D \),

\[
\Pr_{\pi \leftarrow \Pi_n} \left[\text{Inv}^D(\pi) = \Pr_{y \leftarrow \{0,1\}^n} [D(y) = \pi^{-1}(y)] > 2^{-n/5} \right] \leq 2^{-2^{3n/5}}
\]

Random permutations are exponentially hard for exponential-query circuits.

- Extends to randomized algorithms.
- Constants are somewhat arbitrary and non tight.
- Since \# of \(2^{n/5} \)-size circuits is bounded by \(2^{\tilde{O}(2^{n/5})} \), Thm 3 yields that

\[
\Pr_{\pi \leftarrow \Pi_n} \left[\exists \ 2^{n/5} \text{-size circuit } D \text{ with Inv}^D(\pi) > 2^{-n/5} \right] \leq 2^{-2^{n/2}}
\]

Random permutations are exponentially hard for all exponential-size circuits simultaneously.
Proving GT theorem (Thm 3), lazy evaluation approach

Lazy evaluation approach: for any $2^{n/5}$-size circuit C and $x \in \{0, 1\}^n$

$$\Pr_{\pi \leftarrow \Pi_n} [C(\pi(x)) = x] \leq 2^{-4n/5}$$

It follows that for any $2^{n/5}$-size circuit C

$$\Pr_{\pi \leftarrow \Pi_n} \left[\Pr_{x \leftarrow \{0,1\}^n} [C(\pi(x)) = x] > 2^{-3n/5} \right] < 2^{-n/5}$$

Not strong enough to rule out inversion by all small circuits simultaneously.
Proving GT theorem (Thm 3), warmup

Assume D makes no queries.

For how many $\pi \in \Pi_n$ it holds that $\text{Inv}^D(\pi) = 1$?

Answer: one! (defined by $\pi^{-1}(y) = D(y)$)

Hence,

$$\Pr\left[\pi \leftarrow \Pi_n \left| \text{Inv}^D(\pi) = 1 \right. \right] \leq \frac{1}{N!} \leq \left(\frac{e}{2^n}\right)^{2^n}$$

For how many $\pi \in \Pi_n$ it holds that $\text{Inv}^D(\pi) \geq \varepsilon$?

What if D makes oracle queries?
Proving GT theorem (Thm 3)

Lemma 4 (compression lemma)

For any \(q \)-query circuit \(D \) and \(\varepsilon > 0 \), exist algorithms \(\text{Enc} \) and \(\text{Dec} \) s.t. the following holds: Let \(\pi \in \Pi_n \) be s.t. \(\text{Inv}^D(\pi) > \varepsilon \), then

- \(\text{Dec}(\text{Enc}(\pi)) = \pi \).
- \(|\text{Enc}(\pi)| \leq \log((N - a)!) + 2 \cdot \log \left(\binom{N}{a} \right) \), for some \(a \geq \frac{\varepsilon N}{q+1} \).

\[\Rightarrow \] # of permutations in \(\Pi_n \) with \(\text{Inv}^D(\pi) > \varepsilon \) is at most \((N - a)! \cdot \left(\binom{N}{a} \right)^2 \).

- Let \(D \) be a \(q = 2^{n/5} \)-query circuit. By Lemma 4

\[
\Pr_{\pi \leftarrow \Pi_n} \left[\text{Inv}^D(\pi) > 2^{-n/5} \right] \leq \frac{(N - 2^{3n/5})! \cdot \left(\binom{N}{2^{3n/5}} \right)^2}{N!} = \frac{\left(\binom{N}{2^{3n/5}} \right)}{2^{3n/5}!} \leq 2^{-2^{3n/5}}
\]

proving Thm 3.
Proving Compression Lemma, warm-up

Assume D makes no queries.

- Fix $\pi \in \Pi_n$ with $\text{Inv}^D(\pi) > \varepsilon$, and let $\mathcal{Y}_\pi = \{y \in \{0, 1\}^n : D(y) = \pi^{-1}(y)\}$

 Note that $|\mathcal{Y}| \geq \varepsilon N$.

- π is determined by \mathcal{Y}_π and $\mathcal{V}_\pi = \{(x, \pi(x)) : \pi(x) \notin \mathcal{Y}_\pi\}$.

 Proof: π is determined by the sets \mathcal{V}_π and $\mathcal{V}'_\pi = \{(D(y), y) : y \in \mathcal{Y}_\pi\} = \{(x, \pi(x)) : \pi(x) \in \mathcal{Y}_\pi\}$.

- Given \mathcal{Y}_π, the set \mathcal{V}_π is determined by the set $\mathcal{X}_\pi = \pi^{-1}(\mathcal{Y}_\pi) = \{\pi^{-1}(y) : y \in \mathcal{Y}_\pi\}$, and a permutation $\tau_\mathcal{Y}$ over $\{0, 1\}^n \setminus \mathcal{X}_\pi$.

 Hence, π can be described using $\log((N - |\mathcal{Y}|)! + 2 \cdot \log \left(\frac{N}{|\mathcal{Y}|}\right)$ bits.

Define $\text{Enc}(\pi)$ to output the description of $\mathcal{Y}_\pi, \mathcal{X}_\pi$ and τ_π.

$\text{Dec}(\mathcal{Y}, \mathcal{X}, \tau)$ is defined accordingly.
Proving Compression Lemma

Let D be a q-query circuit, and let π be s.t. $\text{Inv}^D_\pi(\pi) > \varepsilon$.

Construction 5 (Useful set $\mathcal{Y}_\pi \subseteq \{0, 1\}^n$)

1. Set $\mathcal{Y}_\pi = \emptyset$ and $\mathcal{I}_\pi = \{y \in \{0, 1\}^n : D^\pi(y) = \pi^{-1}(y)\}$.
2. While $\mathcal{I} \neq \emptyset$, let y be the smallest lexicographic element in \mathcal{I}_π.
 - (a) Add y to \mathcal{Y}_π.
 - (b) Remove y and all answers to π-queries $D^\pi(y)$ makes, from \mathcal{I}_π.

Algorithm 6 (Enc(π))

Output (description of) \mathcal{Y}_π and $\mathcal{V}_\pi = \{(x, \pi(x)) : \pi(x) \notin \mathcal{Y}_\pi\}$.

(Under proper encoding) $|\text{Enc}(\pi)| \leq \log((N - a)!) + 2 \cdot \log \left(\binom{N}{a}\right)$ for $a = |\mathcal{Y}_\pi| \geq \frac{\varepsilon N}{q+1}$.

Algorithm 7 (Dec(\mathcal{Y}, \mathcal{V}))

For all $y \in \mathcal{Y}$ in lexicographic order:

1. Emulate $D^\pi(y)$, answering π-query using \mathcal{V}.
2. If D queries x that is undefined in \mathcal{V}, add (x, y) to \mathcal{V}.
 - Otherwise, add $(D^\pi(y), y)$ to \mathcal{V}.

Output \mathcal{V}.
Remarks

- Result can be proven using alternative compression arguments.
- Extends to random functions and random trapdoor permutation families (TDPs).

 HW2: state and prove for random function from n bit to n bits

- The short description argument is an very useful paradigm (another example soon).
Section 2

BB Impossibility for Basing OWP on OWF
OWF vs OWP

- Most of what we can based on OWPs can also be based on OWFs
 But constructions are much less efficient and way more complicated
- Can we base OWF on OWP?
- Actually the “correct” question, which we do not know how to answer, is can we base (almost) inject OWF on OWF
- We will show that we we cannot base OWP on OWF in a (fully) black box way
The settings

- Let g be an $q(n)$-query oracle-aided function such that $g^f : \{0, 1\}^{m(n)} \mapsto \{0, 1\}^{m(n)}$ is a permutation for every $f : \{0, 1\}^n \mapsto \{0, 1\}^n$.

- For a start, assume that m is increasing and efficiently invertible, and that on input of length $m(n)$, g only call f on inputs of length n.

- R be the reduction: R is an efficient algorithm such that $R^{f, \text{Inv}}$ breaks the one-wayness of $f : \{0, 1\}^n \mapsto \{0, 1\}^n$ for any Inv that breaks that of g^f.

- For a start, assume for simplicity that on input of length n, R only calls f on input of length n.
The attack

Algorithm 8 (The inverter $\text{Inv}^f(z \in \{0, 1\}^{m=m(n)})$

For $i = 1$ to $q = q(n)$

- Find (brute forcly) $x \in \{0, 1\}^m$ and $f' : \{0, 1\}^n \mapsto \{0, 1\}^n$ consistent with S (initially empty) such that $g^{f'}(x) = z$
- Add $(x_1, f(x_1)), \ldots, (x_q, f(x_q))$ to S, for x_1, \ldots, x_q being the queries made by $g^{f'}(x)$

Return $x \in \{0, 1\}^m$ such that all queries of $g^f(x)$ are in S and $g^f(x) = z$.

- On $z \in \{0, 1\}^{m(n)}$, Inv makes at most $q(n)^2$ queries.
- Inv^f inverts g^f with probability one. Proof
 - Let $x = (g^f)^{-1}(z)$.
 - In each round, $\text{Inv}(z)$ asks at least one additional query of $g^f(x)$ (unless it already found all of them)
 - When the loop ends, $\text{Inv}(z)$ asked all queries made by $g^f(x)$, and hence finds x
The impossibility result

- By assumption, for any $f : \{0, 1\}^n \rightarrow \{0, 1\}^n$, $\exists p \in \text{poly}$ such that

$$\Pr_{x \leftarrow \{0,1\}^n, y = f(x)} \left[R^{\text{Inv}, f}(y) \in f^{-1}(y) \right] \geq 1/p(n)$$

- $R^{\text{Inv}, f}(y \in \{0, 1\}^n)$ makes polynomial number of queries.

- For large enough n, let $f_n : \{0, 1\}^n \rightarrow \{0, 1\}^n$ be such that no $2^{n/5}$ algorithm inverts with probability larger than $2^{-n/5}$, and let $f = \{f_n\}$

- Hence, $\Pr_{x \leftarrow \{0,1\}^n, y = f(x)} \left[R^{\text{Inv}, f}(y) \in f^{-1}(y) \right] < 2^{-n/5}$ for every n. A contradiction.

- What goes wrong if we allow g to query f on different input length?
- Essentially nothing, HW 3

- What goes wrong if we allow R to query f on different input length?
Handling reductions of arbitrary query lengths

Let \(F_n \) be all length preserving function over \(\{0, 1\}^n \) and let \(F = \{F_n\}_{n \in \mathbb{N}} \)

For large enough \(n \),

\[
\Pr_{\pi \leftarrow F} \left[\Pr_{x \leftarrow \{0, 1\}^n, y = f(x)} \left[R_{\text{Inv}, f}^l (y) \in f^{-1}(y) \right] \geq 2^{-n/5} \right] < 2^{-2^{3n/5}}
\]

Hence, \(\not\exists p \in \text{poly} \) s.t. \(\Pr_{x \leftarrow \{0, 1\}^n, y = f(x)} \left[R_{\text{Inv}, f}^l (y) \in f^{-1}(y) \right] \geq p(\delta(n)) \), for \(\delta \) being the success probability of \(\text{Inv} \) in inverting \(m(n) \) bit input

Lemma 9 (Borel-Cantelli)

Let \(E_1, \ldots, E_2, \ldots \), be a sequence of events such that \(\sum_{n=1}^{\infty} \Pr[E_n] < \infty \), then

\[
\Pr[\limsup_{n \to \infty} E_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_k] = 0.
\]

Namely, with probability one, only finite number of event occur.

Let \(E_n \) be the event over the choice of \(f \leftarrow F \) that

\[
\Pr_{x \leftarrow \{0, 1\}^n, y = f(x)} \left[R_{\text{Inv}, f}^l (y) \in f^{-1}(y) \right] \geq 2^{-n/5}
\]

(for large enough \(n \)) \(\Pr[E_n] \leq 2^{-2^{3n/5}} < 1/n^2 \)

Hence, \(\sum_{n=1}^{\infty} \Pr[E_n] \leq O(1) + \sum_{n=1}^{\infty} 1/n^2 \in O(1) \)

Hence, with probability one over the choice of \(f \), only for finite finite number of \(n \) it holds that \(\Pr_{x \leftarrow \{0, 1\}^n, y = f(x)} \left[R_{\text{Inv}, f}^l (y) \in f^{-1}(y) \right] \geq 2^{-n/5} \).
Remarks

- Extend to many constructions of prefect object from a imperfect object
- Other example: Perfect KA from OWF, perfect encryption schemes from a non perfect one.
- Seem to be “less significant” impossibility results
- In some cases, and other the right assumption, can be bypassed using non-black-box technique
BB Impossibility for OWF based PRG

Definition 10 (pseudorandom generators (PRGs))

Poly-time $G: \{0, 1\}^n \mapsto \{0, 1\}^{\ell(n)}$ is a pseudorandom generator, if

- G is length extending (i.e., $\ell(n) > n$ for any n)
- $G(U_n)$ is pseudorandom (i.e., $\{G(U_n)\}_{n \in \mathbb{N}} \approx_c \{U_{\ell(n)}\}_{n \in \mathbb{N}}$)

We focus on BB constructions of efficient length-doubling PRGs.

Theorem 11

In any fully-BB construction of length-doubling PRG over n-bits string from OWP over $\{0, 1\}^n$, the construction makes $\Omega(n/\log n)$ oracle calls.

- Matches known upper bounds.
- Without the restriction on the OWP input length, yields an optimal $n^{\Omega(1)}$ bound.
Proving Thm 11, cont.

- Let \((C, R)\) be a fully-BB reduction of a \(q(n) \in o(n/\log n)\)-query, length-doubling PRG over \(\{0, 1\}^n\), to OWP over \(\{0, 1\}^n\).

- Assume w.l.o.g. that \(C\) makes distinct queries.

- Assume for simplicity that on inputs of length \(n\), \(R\) only makes length \(n\) queries.

- For \(t = t(n) = \lfloor n/2q(n) \rfloor\), consider the following generator \(G: \{0, 1\}^{3n} \mapsto \{0, 1\}^{2n}\):

\[
\text{Algorithm 12 } (G(x))
\]

1. Emulate \(C^\pi(x_1, \ldots, n)\), while answering the \(i\)'th query \(z\) of \(C\) to \(\pi\), with \(x_{n+i \cdot t+1, \ldots, n+(i+1) \cdot t} \circ Z_{t+1, \ldots, n}\).

2. Output the same output that \(C\) does.

- Let \(\Pi_{n,t}\) be the set of all permutations over \(\{0, 1\}^n\) that are identity over the last \(n - t\) bits (i.e., \(\pi(x)_{n-t+1, \ldots, n} = x_{n-t+1, \ldots, n}\)).

- It holds that \(G(U_{3n/2}) \equiv (C^\pi(U_n))_{\pi \leftarrow \Pi_{n,t}}\).
Proving Thm 11, cont.

- ∃ algorithm \(D \) that distinguishes \(G(U_{3n/2}) \) from \(U_{2n} \) with advantage
 \[1 - 2^{-n/4} > \frac{1}{2} \]. (?)

\[\implies \text{wlg. } \Pr_{\pi \leftarrow \Pi_{t,n}} [D(C^{\pi}(U_n)) = 1] - \Pr[D(U_{2n}) = 1] > \frac{1}{2} \]

\[\implies \Pr_{\pi \leftarrow \Pi_{t,n}} [\Pr[D(C^{\pi}(U_n)) = 1] - \Pr[D(U_{2n}) = 1] > \frac{1}{4}] \geq \frac{1}{4} \]

\[\implies \Pr_{\pi \leftarrow \Pi_{t,n}} [R^{\pi,D} \text{ inverts } \pi \text{ with non-negligible prob.}] \geq \frac{1}{4} \]

- Let \(n' = t(n) \in \omega(\log n) \).

- By the above, exists \(2^{o(n')} \)-query circuit \(R' \), such that

\[\Pr_{\pi \leftarrow \Pi_{n'}} [R'^{\pi} \text{ inverts } \pi \text{ with non-negligible prob.}] \geq \frac{1}{4}, \]

in contradiction to Thm 3.
Remarks

- We showed a lower bound on the efficiency of fully-BB constructions of length-doubling PRG from OWPs.
- Actually we ruled out a less restricted type of BB-construction, called weak black box:
 - If \(f \) is a secure implementation of \(A \), then \(C^f \) is a secure implementation of \(B \).
- Results extend to OWFs and TDPs.
- Using similar means, one can prove lower bound on fully-BB constructions of encryption schemes, signature schemes and universal-one-way-hash-functions (UOWHFs), from OWFs/OWPs/TDPs.