Foundation of Cryptography, Lecture 10
Multiparty Computation

Handout Mode

Benny Applebaum & Iftach Haitner, Tel Aviv University

Tel Aviv University.

January 26, 2017
Section 1

The Model
Multiparty Computation

- Multiparty Computation – computing a functionality f
- **Secure** Multiparty Computation: compute f in a “secure manner"
 - Correctness
 - Privacy
 - Independence of inputs
 - Guaranteed output delivery
 - Fairness: corrupted parties should get their output iff the honest parties do
 - and ...

- Examples: coin-tossing, broadcast, electronic voting, electronic auctions

- How should we model it?
- Real Vs. Ideal paradigm
Real-model execution

For a pair of algorithms $\overline{A} = (A_1, A_2)$ and inputs $x_c, x_1, x_2 \in \{0, 1\}^*$, let $\text{REAL}_{\overline{A}}(x_c, x_1, x_2)$ be the joint output of $(A_1(x_c, x_1), A_2(x_c, x_2))$.

Given a two-party protocol π, an algorithm taking the role of one of the parties in π is:

- **Malicious** — acts arbitrarily.
- **Honest** — acts exactly according to π.
- **Semi-honest** — acts according to π, but might output additional information.

$\overline{A} = (A_1, A_2)$ is an admissible with respect to π, if at least one party is honest.
Ideal model execution

For a pair of oracle-aided algorithms $\mathcal{B} = (B_1, B_2)$, inputs $x_c, x_1, x_2 \in \{0, 1\}^*$ and a function $f = (f_1, f_2)$, let $\text{IDEAL}^f_{\mathcal{B}}(x_c, x_1, x_2)$ be the joint output of the parties in the end of the following experiment:

1. The input of B_i is (x_c, x_i).
2. B_i sends value y_i to the trusted party.
3. Trusted party sends $z_i = f_i(y_0, y_1)$ to B_i in an arbitrary order.
4. Each party outputs some value.

The actual definition allows a party after receiving its output, to instruct f not to send the the output to the other party.

An oracle-aided algorithm \mathcal{B} taking the role of one of the parties is:

- **Malicious** — acts arbitrarily.
- **Honest** — sends its private input to the trusted party (i.e., sets $y_i = x_i$), and its only output is the value it gets from the trusted party (i.e., z_i).
- **Semi-honest**, sends its input to the trusted party, outputs z_i plus possibly additional information.

$\mathcal{B} = (B_1, B_2)$ is admissible, if at least one party is honest.
Secure computation

Definition 1 (secure computation)

A protocol π securely computes f, if \forall admissible PPT pair $\overline{A} = (A_1, A_2)$ for π, exists admissible oracle-aided PPT pair $\overline{B} = (B_1, B_2)$, s.t.

$$\{\text{REAL}_{\overline{A}}(x_c, x_1, x_2)\}_{x_c, x_1, x_2 \in \{0,1\}^*} \approx_c \{\text{IDEAL}_B^f(x_c, x_1, x_2)\}_{x_c, x_1, x_2 \in \{0,1\}^*}$$

In case \overline{A} is honest, we require that \overline{B} is honest, and the ensembles to be identical.

- Recall that the enumeration index (i.e., x_c, x_1, x_2) is given to the distinguisher.
- π securely computes f implies that π computes f correctly.
- Security parameter
- Auxiliary inputs
- We focus on semi-honest adversaries.
Section 2

Oblivious Transfer
Oblivious transfer

An (one-out-of-two) OT protocol securely computes the functionality $\text{OT} = (\text{OT}_S, \text{OT}_R)$ over $(\{0, 1\}^* \times \{0, 1\}^*) \times \{0, 1\}$, where $\text{OT}_S(\cdot) = \bot$ and $\text{OT}_R((\sigma_0, \sigma_1), i) = \sigma_i$.

- "Complete" for multiparty computation
- We show how to construct for bit inputs.
Oblivious transfer from trapdoor permutations

Let \((G, f, \text{Inv})\) be a TDP and let \(b\) be an hardcore predicate for \(f\).

Protocol 2 ((S, R))

Common input: \(1^n\)

- **S’s input:** \(\sigma_0, \sigma_1 \in \{0, 1\}\).
- **R’s input:** \(i \in \{0, 1\}\).

1. S chooses \((e, d) \leftarrow G(1^n)\), and sends \(e\) to R.
2. R chooses \(x_0, x_1 \leftarrow \{0, 1\}^n\), sets \(y_i = f_e(x_i)\) and \(y_{1-i} = x_{1-i}\), and sends \(y_0, y_1\) to S.
3. S sets \(c_j = b(\text{Inv}_d(y_j)) \oplus \sigma_j\), for \(j \in \{0, 1\}\), and sends \((c_0, c_1)\) to R.
4. R outputs \(c_i \oplus b(x_i)\).

Claim 3

Protocol 2 securely computes OT (in the semi-honest model).
Proving Claim 3

We need to prove that \(\forall \) semi-honest admissible PPT pair \(\overline{A} = (A_1, A_2) \) for \((S, R) \), exists admissible oracle-aided PPT pair \(\overline{B} = (B_1, B_2) \) s.t.

\[
\{\text{REAL}_{\overline{A}}(1^n, (\sigma_0, \sigma_1), i)\} \approx_c \{\text{IDEAL}^{\text{OT}}_{\overline{B}}(1^n, (\sigma_0, \sigma_1), i)\},
\]

where the enumeration is over \(n \in \mathbb{N} \) and \(\sigma_0, \sigma_1, i \in \{0, 1\} \).
R’s security

For a semi-honest implementation S' of S, define the oracle-aided semi-honest strategy $S'_{\mathcal{I}}$ as follows.

Algorithm 4 ($S'_{\mathcal{I}}$)

input: $1^n, \sigma_0, \sigma_1$

1. Send (σ_0, σ_1) to the trusted party.
2. Emulate $(S'(1^n, \sigma_0, \sigma_1), R(1^n, 0))$.
3. Output the output that S' does.

Let $\overline{A} = (S', R)$ and $\overline{B} = (S'_{\mathcal{I}}, R_{\mathcal{I}})$, where $R_{\mathcal{I}}$ is honest.

Claim 5

$\{\text{REAL}_{\overline{A}}(1^n, (\sigma_0, \sigma_1), i)\} \equiv \{\text{IDEAL}^{\text{OT}}_{\overline{B}}(1^n, (\sigma_0, \sigma_1), i)\}$.

Proof?
S’s security

For a semi-honest implementation R' of R, define the oracle-aided semi-honest strategy R'_I as follows.

Algorithm 6 (R'_I)

input: $1^n, i \in \{0, 1\}$,

1. Send i to the trusted party, and let σ be its answer.
2. Emulate $(S(1^n, \sigma_0, \sigma_1), R'(1^n, i))$, for $\sigma_i = \sigma$ and $\sigma_{1-i} = 0$.
3. Output the output that R' does.

Let $\overline{A} = (S, R')$ and $\overline{B} = (S_I, R'_I)$, where S_I is honest.

Claim 7

$$\{\text{REAL}_{\overline{A}}(1^n, (\sigma_0, \sigma_1), i)\} \approx_c \{\text{IDEAL}^{\text{OT}}_{\overline{B}}(1^n, (\sigma_0, \sigma_1), i)\}.$$

Proof?
Section 3

Yao Garbled Circuit
Before we start

- Fix a (multiple message) semantically-secure private-key encryption scheme \((G, E, D)\) with
 1. \(G(1^n) = U_n\).
 2. For any \(m \in \{0, 1\}^*\)
 \[\Pr_{d,d' \leftarrow \{0,1\}^n} [D_d(E_{d'}(m)) \neq \bot] = \text{neg}(n).\]

Can we construct such a scheme?

append \(0^n\) at the end of the message...

- Boolean circuits: gates, wires, inputs, outputs, values, computation
The Garbled Circuit

Fix a Boolean circuit C and $n \in \mathbb{N}$.

- Let \mathcal{W} and \mathcal{G} be the (indices) of wires and gates of C, respectively.
- For $w \in \mathcal{W}$, associate a pair of random ‘keys’ $k_w = (k_w^0, k_w^1) \in (\{0, 1\}^n)^2$.
- For $g \in \mathcal{G}$ with input wires i and j, and output wire h, let $T(g)$ be the following table:

<table>
<thead>
<tr>
<th>input wire i</th>
<th>input wire j</th>
<th>output wire h</th>
<th>hidden output wire</th>
</tr>
</thead>
<tbody>
<tr>
<td>k^0_i</td>
<td>k^0_j</td>
<td>k^0_h</td>
<td>$E_{k^0_i}(E_{k^0_j}(k^0_h))$</td>
</tr>
<tr>
<td>k^0_i</td>
<td>k^1_j</td>
<td>k^1_h</td>
<td>$E_{k^1_i}(E_{k^1_j}(k^1_h))$</td>
</tr>
<tr>
<td>k^1_i</td>
<td>k^0_j</td>
<td>$k^{(1,0)}_h$</td>
<td>$E_{k^1_i}(E_{k^0_j}(k^{(1,0)}_h))$</td>
</tr>
<tr>
<td>k^1_i</td>
<td>k^1_j</td>
<td>$k^{(1,1)}_h$</td>
<td>$E_{k^1_i}(E_{k^1_j}(k^{(1,1)}_h))$</td>
</tr>
</tbody>
</table>

Figure: Table for gate g, with input wires i and j, and output wire h.
The Garbled Circuit, cont.

<table>
<thead>
<tr>
<th>input wire i</th>
<th>input wire j</th>
<th>output wire h</th>
<th>hidden output wire</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_i^0</td>
<td>k_j^0</td>
<td>$k_h^{g(0,0)}$</td>
<td>$E_{k_i^0}(E_{k_j^0}(k_h^{g(0,0)}))$</td>
</tr>
<tr>
<td>k_i^0</td>
<td>k_j^1</td>
<td>$k_h^{g(0,1)}$</td>
<td>$E_{k_i^0}(E_{k_j^1}(k_h^{g(0,1)}))$</td>
</tr>
<tr>
<td>k_i^1</td>
<td>k_j^0</td>
<td>$k_h^{g(1,0)}$</td>
<td>$E_{k_i^1}(E_{k_j^0}(k_h^{g(1,0)}))$</td>
</tr>
<tr>
<td>k_i^1</td>
<td>k_j^1</td>
<td>$k_h^{g(1,1)}$</td>
<td>$E_{k_i^1}(E_{k_j^1}(k_h^{g(1,1)}))$</td>
</tr>
</tbody>
</table>

Let \mathcal{I} and \mathcal{O} be the input and outputs wires of C.

- For $g \in \mathcal{G}$, let $\tilde{T}(g)$ be a random permutation of the fourth column of $T(g)$.
- For $w \in \mathcal{W}$, let $C(x)_w$ be the bit-value computation of $C(x)$ assigns to w.
- Given
 1. $\tilde{T} = \{(g, \tilde{T}(g))\}_{g \in \mathcal{G}}$.
 2. $\{k_w^{C(x)}\}_{w \in \mathcal{I}}$ for some x.
 3. $\{(w, k_w = (k_w^0, k_w^1))\}_{w \in \mathcal{O}}$.

One can efficiently compute $C(x)$.

(essentially) The above leaks no additional information about x!
The protocol

- Let $f(x_A, x_B) = (f_A(x_A, x_B), f_B(x_A, x_B))$ be a function, and let C be a circuit that computes f.
- Let I_A and I_B be the input wires corresponds to x_A and x_B respectively in C, and let O_A and O_B be the output wires corresponds to f_A and f_B outputs respectively in C.
- Recall that $C(x)_w$ is the bit-value the computation of $C(x)$ assigns to w.
- Let (S, R) be a secure protocol for OT.

Protocol 8 ((A, B))

Common input: 1^n. **A/B’s input:** x_A/x_B

1. A samples at random $\{k_w = (k_w^0, k_w^1)\}_{w \in W}$, and generate \tilde{T}.
2. A sends \tilde{T} and $\{(w, k_w^{C(x_1, \cdot)}_w)\}_{w \in I_A}$ to B.
3. $\forall w \in I_B$, A and B interact in $(S(k_w), R(C(\cdot, x_2)_w))(1^n)$.
4. B computes the (garbled) circuit, and sends $\{(w, k_w^{C(x_1, x_2)_w})\}_{w \in O_A}$ to A.
5. A sends $\{(w, k_w)\}_{w \in O_B}$ to B.
6. The parties compute $f_A(x_1, x_2)$ and $f_B(x_1, x_2)$ respectively.
Example, computing OR

On board...
Claim 9

Protocol 8 securely computes f (in the semi-honest model)

Proof: We focus on the security of A. For a semi-honest B', define

Algorithm 10 (B'_I)

input: 1^n and x_B.

1. Send x_B to the trusted party, and let o_B be its answer.
2. Emulate the first 4 steps of $(A(1|x_A|), B'(x_B)(1^n))$.
3. For each $w \in O_B$: permute the order of the pair k_w according to o_B, and the key of w computed in the emulation.
4. Complete the emulation, and output the output that B' does.

Claim: B'_I is a good “simulator” for B'.

Security of A ?
Extensions

- Efficiently computable f

 Both parties first compute C_f – a circuit that computes f for inputs of the right length

- Hiding C? All but its size
Malicious model

The parties prove that they act “honestly”:

1. Forces the parties to chose their random coin properly
2. Before each step, the parties prove in \mathcal{ZK} that they followed the prescribed protocol (with respect to the random-coins chosen above)
Course summary

See diagram
What we did not cover

- “Few” reductions
- Environment security (e.g., UC)
- Information theoretic crypto
- Non-generic constructions: number theory, lattices
- Impossibility results
- “Real life cryptography” (e.g., Random oracle model)
- Security
- Differential privacy
 (maybe it is still not too late to register to Barllan winter School...)
- and....
Advanced course (next semester, same time)

- Cryptography in low depth
- Impossibility result
- Computation notion of entropy and their applications
- and more...
Students seminar on MPC, Tuesdays 10–12

- Will cover (some of) the basic topics in this exciting area.
- Lectures list to be publish early February.
- Each students gives a two hours (white board) talk.
- A graduate seminar, but undergrad who took this course are welcome.
The exam