Foundation of Cryptography, Lecture 7
Non-Interactive ZK and Proof of Knowledge

Handout Mode

Benny Applebaum & Iftach Haitner, Tel Aviv University

Tel Aviv University.

December 29, 2016
Part I

Non-Interactive Zero Knowledge
Interaction is crucial for \mathcal{ZK}

Claim 1

Assume that $\mathcal{L} \subseteq \{0, 1\}^*$ has a one-message \mathcal{ZK} proof (even computational), with standard completeness and soundness,\(^a\) then $\mathcal{L} \in \mathbf{BPP}$.\(^b\)

\(^a\)That is, the completeness is $\frac{2}{3}$ and soundness error is $\frac{1}{3}$.

Proof: HW

1. To reduce interaction, we relax the zero-knowledge requirement

 1. **Witness Indistinguishability**

 \[
 \{ \langle (P(w_1^1), V^*)(x) \rangle_{V^*} \}_{x \in \mathcal{L}} \approx_c \{ \langle (P(w_2^2), V^*)(x) \rangle_{V^*} \}_{x \in \mathcal{L}},
 \]

 for any $\{ w_1^1 \in R_{\mathcal{L}}(x) \}_{x \in \mathcal{L}}$ and $\{ w_2^2 \in R_{\mathcal{L}}(x) \}_{x \in \mathcal{L}}$

 2. **Witness hiding**

 3. **Non-interactive “zero knowledge”**
Non-Interactive Zero Knowledge (NIZK)

Definition 2 (NIZK)

A pair of non interactive PPTM’s \((P, V)\) is a NIZK for \(L \in \mathcal{NP}\), if \(\exists \ell \in \text{poly}\) s.t.

- **Completeness:** \(\Pr_{c \leftarrow \{0,1\}^{\ell(|x|)}} [V(x, c, P(x, w(x), c)) = 1] \geq \frac{2}{3}\), for any \(x \in L\) and \(w(x) \in R_L(x)\).

- **Soundness:** \(\Pr_{c \leftarrow \{0,1\}^{\ell(|x|)}} [V(x, c, P^*(x, c)) = 1] \leq \frac{1}{3}\), for any \(P^*\) and \(x \notin L\).

- **Zero knowledge:** \(\exists\) PPTM \(S\) s.t.
 \[
 \{(x, c, P(x, w(x), c)) \mid c \leftarrow \{0,1\}^{\ell(|x|)}\} \approx_c \{x, S(x)\}_{x \in L}
 \]
 for any poly-bounded function \(w\) with \(w(x) \in R_L(x)\).

- \(c\) – common (random) reference string (CRS)
- In the ZK part, CRS is chosen by the simulator.
- What does this definition (intuitively) mean?
- Auxiliary information.
- Amplification?
- What happens when applying \(S\) on \(x \notin L\)?
Non-Interactive Zero Knowledge, cont.

- Statistical/Perfect zero knowledge?
- Non-interactive Witness Hiding (WI)
Section 1

NIZK in HBM
Hidden Bits Model (HBM)

A CRS is chosen at random, but only the prover can see it. The prover chooses which bits to reveal as part of the proof.

Let c^H be the “hidden” CRS:

1. Prover sees c^H, and outputs a proof π and a set of indices I.
2. Verifier only sees π and the bits in c^H indexed by I.
3. Simulator outputs a proof π, a set of indices I and a partially hidden CRS c^H.

Soundness, completeness and ZK are naturally defined.

- We give a \mathcal{NIZK} for HC, Directed Graph Hamiltonicity, in the HBM, and then transfer it into a \mathcal{NIZK} for HC in the standard model.
- The latter implies a \mathcal{NIZK} for all NP.
Useful matrix

- **Permutation matrix**: an $n \times n$ Boolean matrix, each row/column contains a single 1.

- **Hamiltonian matrix**: an $n \times n$ adjacency matrix of a directed graph that is an Hamiltonian cycle of all nodes (note that Hamiltonian matrix is also a permutation matrix).

- **Useful matrix**: an $n^3 \times n^3$ Boolean matrix that contains an Hamiltonian generalized $n \times n$ sub-matrix, and all other entries are zeros.

Claim 3

Let T be a random $n^3 \times n^3$ Boolean matrix s.t. each entry is 1 w.p n^{-5}. Then, $\Pr[T \text{ is useful}] \in \Omega(n^{-3/2})$.
Proving \(\Pr [T \text{ is useful}] \in \Omega(n^{-3/2}) \)

- The expected \# of ones (entries) in \(T \) is \(n^6 \cdot n^{-5} = n \).
- By (extended) Chernoff bound, \(T \) contains exactly \(n \) ones w.p. \(\theta(1/\sqrt{n}) \).
- Each row/colomn of \(T \) contain more than a single one entry with probability at most \(\binom{n^3}{2} \cdot n^{-10} < n^{-4} \).

Hence, wp at least \(1 - 2 \cdot n^3 \cdot n^{-4} = 1 - O(n^{-1}) \), no raw or column of \(T \) contains more than a single one entry.

- Hence, wp \(\theta(1/\sqrt{n}) \) the matrix \(T \) contains a permutation matrix and all its other entries are zero.

- A random permutation matrix forms a cycle wp \(1/n \) (there are \(n! \) permutation matrices and \((n - 1)! \) of them form a cycle)
NIZK for Hamiltonicity in HBM

- Common input: a directed graph $G = ([n], E)$
- We assume w.l.g. that n is a power of 2 (?)
- Common reference string T viewed as a $n^3 \times n^3$ Boolean matrix, where each entry is 1 w.p n^{-5} (?)

Algorithm 4 (P)

Input: n-node graph $G = ([n], E)$ and a cycle C in G.
CRS: $T \in \{0, 1\}_{n^3 \times n^3}$.

1. If T not useful, set $I = n^3 \times n^3$ (i.e., reveal all T) and $\pi = \bot$.
2. Otherwise, let H be the (generalized) $n \times n$ sub-matrix containing the hamiltonian cycle in T.
 1. Set $I = T \setminus H$ (i.e., reveal the bits of T outside of H).
 2. Choose $\phi \leftarrow \Pi_n$ s.t. C is mapped to the cycle in H.
 3. Add the entries in H corresponding to non edges in G (wrt. ϕ) to I.
3. Output $\pi = \phi$ and I.
Algorithm 5 (V)

Input: \(n \)-node graph \(G = ([n], E) \), mapping \(\phi \), index set \(\mathcal{I} \subseteq [n^3] \times [n^3] \) and an ordered set \(\{T_i\}_{i \in \mathcal{I}} \).

Accept if \(\phi = \perp \), all the bits of \(T \) are revealed and \(T \) is not useful.

Otherwise,

1. Verify that \(\phi \in \Pi_n \).

2. Verify that exists a single \(n \times n \) generalized submatrix \(H \subseteq T \) s.t. all entries in \(T \setminus H \) are zeros.

3. Verify that all entries of \(H \) not corresponding to edges of \(G \) according to \(\phi \), are zeros: \(\forall (u, v) \notin E \), the entry \((\phi(u), \phi(v)) \) in \(H \) is opened to 0.

Claim 6

The above protocol is a perfect NIZK for \(\mathcal{HC} \) in the HBM, with perfect completeness and soundness error \(1 - \Omega(n^{-3/2}) \).
Proving Claim 6

- Completeness: Clear.
- Soundness: Assume T is useful and V accepts. Then ϕ^{-1} maps the unrevealed “edges" of H to the edges of G.

 Hence, ϕ^{-1} maps the cycle in H to an Hamiltonian cycle in G.

- Zero knowledge?
Algorithm 7 (S)

Input: G

1. Choose T at random (i.e., each entry is one wp n^{-5}).
2. If T is not useful, set $I = n^3 \times n^3$ and $\phi = \perp$.
3. Otherwise,
 1. Set $I = T \setminus H$ (where H is the hamiltonian sub-matrix in T).
 2. Let $\phi \leftarrow \Pi_n$. Replace all entries of H with zeros.
 3. Add the entries in H corresponding to non edges in G to I.
4. Output $\pi = (T, I, \phi)$.

- Perfect simulation for non-useful T’s.
- For useful T, the location of H is uniform in the real and simulated case.
- ϕ is a random element in Π_n in both (real and simulated) cases (?)
- Hence, the simulation is perfect!
Section 2

From HBM to Standard NIZK
Subsection 1

TDP
Definition 8 (trapdoor permutations)

A triplet (G, f, Inv), where G is a PPTM, and f and Inv are poly-time computable, is a family of trapdoor permutation (TDP), if:

1. On input 1^n, $G(1^n)$ outputs a pair (sk, pk).
2. $f_{pk} = f(pk, \cdot)$ is a permutation over $\{0, 1\}^n$, for every $n \in \mathbb{N}$ and $pk \in \text{Supp}(G(1^n)_2)$.
3. $\text{Inv}_{sk} = \text{Inv}(sk, \cdot) \equiv f_{pk}^{-1}$ for every $(sk, pk) \in \text{Supp}(G(1^n))$.
4. For any PPTM A,
 $$\Pr_{x \leftarrow \{0,1\}^n, pk \leftarrow G(1^n)_2} \left[A(pk, x) = f_{pk}^{-1}(x) \right] = \text{neg}(n)$$
Definition 9 (hardcore predicates for TDP)

A polynomial-time computable \(b : \{0, 1\}^n \mapsto \{0, 1\} \) is a hardcore predicate of a TDP \((G, f, \text{Inv})\), if

\[
\Pr_{pk \leftarrow G(1^n)_2, x \leftarrow \{0, 1\}^n} [P(pk, f_{pk}(x)) = b(x)] \leq \frac{1}{2} + \neg(n),
\]

for any PPTM \(P \).

Goldreich-Levin: any TDP has an hardcore predicate (ignoring padding issues)
Example, RSA

In the following $N \in \mathbb{N}$ is a large number (n-bit long) and all operations are modulo N.

- $\mathbb{Z}_N = [N]$ and $\mathbb{Z}_N^* = \{x \in [N] : \gcd(x, N) = 1\}$
- $\phi(N) = |\mathbb{Z}_N^*|$ (equals $(P - 1)(Q - 1)$ for $N = PQ$ with $P, Q \in \mathcal{P}$)
- For every $e \in \mathbb{Z}_\phi(N)^*$, the function $f(x) \equiv x^e \mod N$ is a permutation over \mathbb{Z}_N^*.

In particular, $(x^e)^d \equiv x \mod N$, for every $x \in \mathbb{Z}_N^*$, where $d \equiv e^{-1} \mod \phi(N)$

Definition 10 (RSA)

- $G(P, Q)$ sets $pk = (N = PQ, e)$ for some $e \in \mathbb{Z}_\phi(N)^*$, and $sk = (N, d \equiv e^{-1} \mod \phi(N))$
- $f(pk, x) = x^e \mod N$
- $\text{Inv}(sk, x) = x^d \mod N$

Factoring is easy \implies RSA is easy. The other direction?
Subsection 2

The Transformation
The transformation

- Let \((P_H, V_H)\) be a HBM \(\mathcal{NIZK}\) for \(L\), and let \(\ell(n)\) be the length of the CRS used for \(x \in \{0, 1\}^n\).

- Let \((G, f, \text{Inv})\) be a TDP and let \(b\) be an hardcore bit for it.

 For simplicity, assume that \(G(1^n)\) chooses \((sk, pk)\) as follows:

 1. \(sk \leftarrow \{0, 1\}^n\)
 2. \(pk = PK(sk)\)

 where \(PK : \{0, 1\}^n \mapsto \{0, 1\}^n\) is a polynomial-time computable function.

We construct a \(\mathcal{NIZK}(P, V)\) for \(L\), with the same completeness and "not too large" soundness error.
The protocol

Algorithm 11 (P)
Input: $x \in \mathcal{L}$, $w \in R_{\mathcal{L}}(x)$ and CRS $c = (c_1, \ldots, c_\ell) \in \{0, 1\}^{n\ell}$, where $n = |x|$ and $\ell = \ell(n)$.

1. Choose $(sk, pk) \leftarrow G(sk)$ and compute $c^H = (b(z_1 = f_{pk}^{-1}(c_1)), \ldots, b(z_{\ell(n)} = f_{pk}^{-1}(c_\ell)))$

2. Let $(\pi_H, I) \leftarrow P_H(x, w, c^H)$ and output $(\pi_H, I, pk, \{z_i\}_{i \in I})$

Algorithm 12 (V)
Input: $x \in \mathcal{L}$, CRS $c = (c_1, \ldots, c_\ell) \in \{0, 1\}^{np}$, and $(\pi_H, I, pk, \{z_i\}_{i \in I})$, where $n = |x|$ and $\ell = \ell(n)$.

1. Verify that $pk \in \{0, 1\}^n$ and that $f_{pk}(z_i) = c_i$ for every $i \in I$

2. Return $V_H(x, \pi_H, I, c^H)$, where $c_i^H = b(z_i)$ for every $i \in I$.
Claim 13

Assuming that \((P_H, V_H)\) is a NIZK for \(L\) in the HBM with soundness error \(2^{-n} \cdot \alpha\), then \((P, V)\) is a NIZK for \(L\) with the same completeness, and soundness error \(\alpha\).

Proof: Assume for simplicity that \(b\) is unbiased (i.e., \(\Pr[b(U_n) = 1] = \frac{1}{2}\)). For every \(pk \in \{0, 1\}^n\):

\[
\left(b(f_{pk}^{-1}(c_1)), \ldots, b(f_{pk}^{-1}(c_\ell)) \right)_{c \leftarrow \{0, 1\}^n} \text{ is uniformly distributed in } \{0, 1\}^\ell.
\]

- Completeness: clear
- Soundness: follows by a union bound over all possible choice of \(pk \in \{0, 1\}^n\).
- Zero knowledge?:?
Proving zero knowledge

Algorithm 14 (S)

Input: \(x \in \{0, 1\}^n \) of length \(n \).

- Let \((\pi_H, \mathcal{I}, c^H) = S_H(x)\), where \(S_H\) is the simulator of \((P_H, V_H)\).
- Output \((c, (\pi_H, \mathcal{I}, pk, \{z_i\}_{i \in \mathcal{I}}))\), where
 - \(pk \leftarrow G(U_n)\)
 - Each \(z_i\) is chosen at random in \(\{0, 1\}^n\) such that \(b(z_i) = c_i^H\)
 - \(c_i = f_{pk}(z_i)\) for \(i \in \mathcal{I}\), and a random value in \(\{0, 1\}^n\) otherwise.

The above implicitly describes an efficient \(M\) s.t.
\[
M(S_H(x)) \equiv S(x) \text{ and } M(P_H(x, w(x))) \approx_c P(x, w(x))
\]

Hence, distinguishing \(P(x, w(x))\) from \(S(x)\) is hard

Direct solution for our \(\mathcal{NIZK}\)

An “adaptive” \(\mathcal{NIZK}\)
Section 3

Adaptive NIZK
Adaptive \mathcal{NIZK}

x is chosen after the CRS.

- **Completeness:** $\forall f: \{0, 1\}^{\ell(n)} \mapsto \mathcal{L} \cap \{0, 1\}^n$ and $w(x) \in R_{\mathcal{L}}(x)$:
 \[\Pr_{c \leftarrow \{0,1\}^{\ell(n)}; x = f(c)} [V(x, c, P(x, w(x), c)) = 1] \geq 2/3 \]

- **Soundness:** $\forall f: \{0, 1\}^{\ell(n)} \mapsto \{0, 1\}^n$ and P^*
 \[\Pr_{c \leftarrow \{0,1\}^{\ell(n)}; x = f(c)} [V(x, c, P^*(c)) = 1 \land x \notin \mathcal{L}] \leq 1/3 \]

- **ZK:** \exists pair of PPTM’s (S_1, S_2) s.t. $\forall f: \{0, 1\}^{\ell(n)} \mapsto \mathcal{L} \cap \{0, 1\}^n$

\[\{(c \leftarrow \{0, 1\}^{\ell(n)}, x = f(c), P(x, w(x)))\}_{n \in \mathbb{N}} \approx_c \{S^f(n)\}_{n \in \mathbb{N}}. \]

where $S^f(n)$ is the output of the following process

1. $(c, s) \leftarrow S_1(1^n)$
2. $x = f(c)$
3. Output $(c, x, S_2(x, c, s))$

Why do we need s?
Adaptive \mathcal{NIZK}, cont.

- Adaptive completeness and soundness are easy to achieve from any non-adaptive \mathcal{NIZK}.

- Not every \mathcal{NIZK} is adaptive \mathcal{ZK}.

Theorem 15

Assume TDP exist, then every \mathcal{NP} language has an adaptive \mathcal{NIZK} with perfect completeness and negligible soundness error.

In the following, when saying adaptive \mathcal{NIZK}, we mean negligible completeness and soundness error.
Section 4

Simulation-Sound NIZK
Simulation soundness

A NIZK system \((P, V)\) for \(L\) has (one-time) simulation soundness, if \(\exists\) a pair of PPTM’s \(S = (S_1, S_2)\) that satisfies the ZK property of \(P\) with respect to \(L\), and in addition

\[
\Pr_{(c, x, \pi, x', \pi') \leftarrow \text{Exp}^n_{V, S, P^*}} [x' \notin L \land V(x', \pi', c) = 1 \land (x', \pi') \neq (x, \pi)] = \neg(n)
\]

for any pair of PPTM’s \(P^* = (P^*_1, P^*_2)\).

Experiment 16 (Exp\(^n_{V, S, P^*}\))

1. \((c, s) \leftarrow S_1(1^n)\)
2. \((x, p) \leftarrow P^*_1(1^n, c)\)
3. \(\pi \leftarrow S_2(x, c, s)\)
4. \((x', \pi') \leftarrow P^*_2(p, \pi)\)
5. Output \((c, x, \pi, x', \pi')\)
Simulation soundness, cont.

- After seeing a simulated (possibly false) proof, hard to generate an additional false proof
- Definition only considers efficient provers
- \((P, V)\) might be adaptive or non-adaptive
- Standard NIZK guarantees weak type of simulation soundness (hard to fake proofs for simulated CRS and predefined \(x'\)) (?)
- Does the adaptive NIZK we seen have simulation soundness?
Construction

We present a simulation sound \(\mathcal{NIZK} (P, V) \) for \(L \in \mathcal{NP} \)

Ingredients:

1. Strong signature scheme \((\text{Gen}, \text{Sign}, \text{Vrfy})\) (one-time scheme suffices)
2. Non-interactive, perfectly-binding commitment \(\text{Com} \).
 - Pseudorandom range: for some \(\ell \in \text{poly} \)
 \[
 \{\text{Com}(w, r \leftarrow \{0, 1\}^{\ell(|w|)})\}_{w \in \{0, 1\}^*} \approx_c \{u \leftarrow \{0, 1\}^{\ell(|w|)}\}_{w \in \{0, 1\}^*}
 \]
 * achieved by the standard OWP (or TDP) based perfectly-binding commitment.
 - Negligible support: a random string is a valid commitment only with negligible probability.
 * achieved by using the standard OWP (or TDP) based perfectly-binding commitment, and committing to the same value many times.

3. Adaptive \(\mathcal{NIZK} (P_A, V_A) \) for
 \[L_A := \{(x, \text{com}, w) : x \in L \lor \exists r \in \{0, 1\}^* : \text{com} = \text{Com}(w, r)\} \in \mathcal{NP} \]
 * adaptive \(WI \) suffices
Construction, cont.

Recall $\mathcal{L}_A := \{(x, \text{com}, w) : x \in \mathcal{L} \lor \exists r \in \{0, 1\}^* : \text{com} = \text{Com}(w, r)\}$.

Algorithm 17 (P)

Input: $x \in \mathcal{L}$ and $w \in R_{\mathcal{L}}(x)$, and CRS $c = (c_1, c_2)$

1. $(sk, vk) \leftarrow \text{Gen}(1^{\lvert x \rvert})$
2. $\pi_A \leftarrow P_A((x, c_1, vk), w, c_2)$
3. $\sigma \leftarrow \text{Sign}_{sk}(x, \pi_A)$
4. Output $\pi = (vk, \pi_A, \sigma)$

Algorithm 18 (V)

Input: $x \in \{0, 1\}^*$, $\pi = (vk, \pi_A, \sigma)$ and a CRS $c = (c_1, c_2)$

Verify that $Vrfy_{vk}((x, \pi_A), \sigma) = 1$ and $V_A((x, c_1, vk), c_2, \pi_A) = 1$

Claim 19

The proof system (P, V) is an adaptive \mathcal{NIZK} for \mathcal{L}, with one-time simulation soundness.
Proving Claim 19

Recall $\mathcal{L}_A := \{(x, \text{com}, w) : x \in \mathcal{L} \lor \exists r \in \{0, 1\}^* : \text{com} = \text{Com}(w, r)\}$.

- **Adaptive completeness:** Follows by the adaptive completeness of (P_A, V_A).

- **Adaptive ZK:**

 - $S_1(1^n)$:
 1. Let $(sk, vk) \leftarrow \text{Gen}(1^n)$, $z \leftarrow \{0, 1\}^{\ell(n)}$ and $c_1 = \text{Com}(vk, z)$.
 2. Output $(c = (c_1, c_2), s = (z, sk, vk))$, where c_2 is chosen uniformly at random.

 - $S_2(x, c = (c_1, c_2), s = (z, sk, vk))$:
 1. Let $\pi_A \leftarrow P_A((x, c_1, vk), z, c_2)$
 2. $\sigma \leftarrow \text{Sign}_{sk}(x, \pi_A)$
 3. Output $\pi = (vk, \pi_A, \sigma)$

 Proof follows by the adaptive WI of (P_A, V_A) and the pseudorandomness of Com

- **Adaptive soundness:** Implicit in the proof of simulation soundness, given next slide.
Proving simulation soundness

Recall $L_A := \{(x, \text{com}, w) : x \in L \lor \exists r \in \{0, 1\}^*: \text{com} = \text{Com}(w, r)\}$.

Let $P^* = (P^*_1, P^*_2)$ be a pair of PPTM's attacking the simulation soundness of (V, S) with respect to L, and let $c = (c_1, c_2)$, x, π, x' and $\pi' = (vk', \pi'_A, \sigma')$ be the values generated by a random execution of Exp^n_{V, S, P^*}.

Assume $Vrfy_{vk'}((x', \pi'_A), \sigma') = 1$, $x' \not\in L$ and $(x', \pi') \neq (x, \pi)$.

Then with all but negligible probability:

- vk' is not the verification key appeared in π ($(\text{Gen}, \text{Sign}, \text{Vrfy})$ is a strong signature)

 $$\implies \nexists r \in \{0, 1\}^* \text{ s.t. } c_1 = \text{Com}(vk', r) \quad (\text{Com is perfectly binding})$$

 $$\implies x'_A = (x', c_1, vk') \not\in L_A \quad \text{(above and } x' \not\in L)$$

Since c_2 was chosen at random by S_1, the adaptive soundness of (P_A, V_A) yields that $\Pr[V_A(x'_A, c_2, \pi'_A) = 1] = \text{neg}(n)$.

Adaptive soundness?
Part II

Proof of Knowledge
Proof of Knowledge

The protocol \((P, V)\) is a proof of knowledge for \(L \in \mathcal{NP}\), if a \(P^*\) convinces \(V\) to accept \(x\), then \(P^*\) “knows” \(w \in R_L(x)\).

Definition 20 (knowledge extractor)

Let \((P, V)\) be an interactive proof for \(L \in \mathcal{NP}\). A probabilistic algorithm \(E\) is a knowledge extractor for \((P, V)\) and \(R_L\) with error \(\eta: \mathbb{N} \rightarrow \mathbb{R}\), if \(\exists t \in \text{poly} \) s.t. \(\forall x \in L\) and deterministic algorithm \(P^*\), \(E^{P^*}(x)\) runs in expected time bounded by \(\frac{t(|x|)}{\delta(x) - \eta(|x|)}\) and outputs \(w \in R_L(x)\), where \(\delta(x) = \text{Pr}[(P^*, V)(x) = 1]\).

\((P, V)\) is a proof of knowledge for \(L\) with error \(\eta\),

- A property of \(V\)
- Why do we need it? Authentication schemes
- Why only deterministic \(P^*\)?
Examples

Claim 21

The ZK proof we've seen in class for GI, has a knowledge extractor with error $\frac{1}{2}$.

Proof: ?

Claim 22

The ZK proof we’ve seen in class for $3COL$, has a knowledge extractor with error $\frac{1}{|E|}$.

Proof: ?