Section 1

Commitment Schemes
Commitment Schemes

Digital analogue of a safe.

Definition 1 (Commitment scheme)

An efficient two-stage protocol (S, R).

Commit The sender S has private input $\sigma \in \{0, 1\}^*$ and the common input is 1^n. The commitment stage results in a joint output c, the commitment, and a private output d to S, the decommitment.

Reveal S sends the pair (d, σ) to R, and R either accepts or rejects.

Completeness: R always accepts in an honest execution.

Hiding: In commit stage: \forall PPT R^*, $m \in \mathbb{N}$ and $\sigma, \sigma' \in \{0, 1\}^m$, $\{\text{View}_{R^*}(S(\sigma), R^*)(1^n)\}_{n \in \mathbb{N}} \approx_c \{\text{View}_{R^*}(S(\sigma'), R^*)(1^n)\}_{n \in \mathbb{N}}$.
Commitment Schemes cont.

Binding: A cheating sender S^* succeeds in the following game with negligible probability in n:

On security parameter 1^n, S^* interacts with R in the commit stage resulting in a commitment c, and then output two pairs (d, σ) and (d', σ') with $\sigma \neq \sigma'$ such that $R(c, d, \sigma) = R(c, d', \sigma') = \text{Accept}$
Commitment Schemes cont.

- wlg. we can think of d as the random coin of S, and c as the transcript
- Hiding: Perfect, statistical, computational
- Binding: Perfect, statistical, computational
- Cannot achieve both properties to be statistical simultaneously.
- For computational security, we will assume non-uniform entities:
 - On security parameter n, the adversary gets a poly-bounded auxiliary input z_n.
- Suffices to construct “bit commitments"
- (non-uniform) OWFs imply statistically binding, computationally hiding commitments, and also computationally binding, statistically hiding commitments
Perfectly Binding Commitment from OWP

Let $f : \{0, 1\}^n \rightarrow \{0, 1\}^n$ be a permutation and let b be a (non-uniform) hardcore predicate for f.

Protocol 2 ((S, R))

Commit:
S’s input: $\sigma \in \{0, 1\}$

S chooses a random $x \in \{0, 1\}^n$, and sends $c = (f(x), b(x) \oplus \sigma)$ to R

Reveal:
S sends (x, σ) to R, and R accepts iff (x, σ) is consistent with c (i.e., $f(x) = c_1$ and $b(x) \oplus \sigma = c_2$)
Claim 3

Protocol 2 is perfectly binding and computationally hiding commitment scheme.

′ Proof: Correctness and binding are clear.

Hiding: for any (possibly non-uniform) algorithm \(A \), let

\[
\Delta^A_n = |\Pr[A(f(U_n), b(U_n) \oplus 0) = 1] - \Pr[A(f(U_n), b(U_n) \oplus 1) = 1]| \]

It follows that

\[
|\Pr[A(f(U_n), b(U_n) \oplus 0) = 1] - \Pr[A(f(U_n), b(U_n) \oplus U) = 1]| = \Delta^A_n / 2
\]

Hence,

\[
|\Pr[A(f(U_n), b(U_n)) = 1] - \Pr[A(f(U_n), U) = 1]| = \Delta^A_n / 2 \quad (1)
\]

Thus, \(\Delta^A_n \) is negligible for any PPT
Statistically Binding Commitment from OWF.

Let \(g: \{0, 1\}^n \rightarrow \{0, 1\}^{3n} \) be a (non-uniform) PRG

Protocol 4 \((S, R)\)

Commit Common input: \(1^n \).
S’s input: \(\sigma \in \{0, 1\} \).

1. R chooses a random \(r \leftarrow \{0, 1\}^{3n} \) to S
2. S chooses a random \(x \in \{0, 1\}^n \), and send \(g(x) \) to S in case \(\sigma = 0 \) and \(c = g(x) \oplus r \) otherwise.

Reveal: S sends \((\sigma, x)\) to R, and R accepts iff \((\sigma, x)\) is consistent with \(r \) and \(c \)

Correctness is clear. Hiding and bidding HW