Foundation of Cryptography, Lecture 4
MACs and Signatures

Handout Mode

Benny Applebaum & Iftach Haitner, Tel Aviv University

Tel Aviv University.

December 8, 2016
Part I

Message Authentication Codes (MACs)
Message Authentication Code (MACs)

Definition 1 (MAC)

A trippet of PPT’s \((\text{Gen}, \text{Mac}, \text{Vrfy})\) such that:

1. \(\text{Gen}(1^n)\) outputs a key \(k \in \{0, 1\}^*\)
2. \(\text{Mac}(k, m)\) outputs a “tag” \(t\)
3. \(\text{Vrfy}(k, m, t)\) output 1 (YES) or 0 (NO)

Consistency: \(\text{Vrfy}_k(m, t) = 1\)
\(\forall k \in \text{Supp}(\text{Gen}(1^n)), m \in \{0, 1\}^n\) and \(t = \text{Mac}_k(m)\)

Definition 2 (Existential unforgeability)

A MAC \((\text{Gen}, \text{Mac}, \text{Vrfy})\) is existential unforgeable (EU), if \(\forall\) PPT \(A:\)

\[
\Pr_{k \leftarrow \text{Gen}(1^n), (m, t) \leftarrow A^{\text{Mac}_k \cdot \text{Vrfy}_k(1^n)}} [\text{Vrfy}_k(m, t) = 1 \land \text{Mac}_k \text{ was not asked on } m] = \text{neg}(n)
\]

Remark: convention
Definition of MAC cont.

- “Private key" definition
- Security definition too strong? Any message? Use of Verifier?
- “Replay attacks"

Strong existential unforgeable MACS (for short, strong MAC): infeasible to generate new valid tag (even for message for which a MAC was asked)
Restricted MACs

Definition 3 (Length-restricted MAC)
Same as in Definition 1, but for $k \in \text{Supp}(G(1^n))$, Mac_k and Vrfy_k only accept messages of length n.

Definition 4 (ℓ-time MAC)
A MAC scheme is existential unforgeable against ℓ queries (for short, ℓ-time MAC), if it is existential unforgeable as in Definition 2, but A can only make ℓ queries.
Section 1

Constructions
One-time length-restricted MAC

Construction 5 (One-time MAC)

- \text{Gen}(1^n): output } k \leftarrow \{0, 1\}^n.
- \text{Mac}_k(m): output } h_k(m).
- \text{Vrfy}_k(m, t): output } 1 \text{ iff } t = h_k(m).

Claim 6

The scheme is one-time MAC if \{h_k\} is pairwise-independent.
Subsection 1

Restricted-Length MAC
ℓ-wise independent functions

Definition 7 (ℓ-wise independent)

A function family \mathcal{H} from $\{0, 1\}^n$ to $\{0, 1\}^m$ is ℓ-wise independent, if for every distinct $x_1, \ldots, x_\ell \in \{0, 1\}^n$ and every $y_1, \ldots, y_\ell \in \{0, 1\}^m$, it holds that

$$\Pr_{h \leftarrow \mathcal{H}} [h(x_1) = y_1 \land \ldots \land h(x_\ell) = y_\ell] = 2^{-\ell m}.$$
Let $\mathcal{H} = \{\mathcal{H}_n : \{0, 1\}^n \mapsto \{0, 1\}^n\}$ be an efficient $(\ell + 1)$-wise independent function family.

- **Gen(1^n):** output $h \leftarrow \mathcal{H}_n$.
- **Mac(h, m):** output $h(m)$.
- **Vrfy(h, m, t):** output 1 iff $t = h(m)$.

Claim 9

The above scheme is a length-restricted, ℓ-time MAC

Proof: ?
OWF \implies restricted-length MAC

Construction 10

Same as Construction 8, but uses function $\mathcal{F} = \{\mathcal{F}_n: \{0, 1\}^n \rightarrow \{0, 1\}^n\}$ instead of \mathcal{H}.

Claim 11

Assuming that \mathcal{F} is a PRF, then Construction 10 is an existential unforgeable MAC.

Proof: Easy to prove if \mathcal{F} is a family of random functions. Hence, also holds in case \mathcal{F} is a PRF.\square
Subsection 2

Any Length
Definition 12 (collision resistant hash family (CRH))

A function family $\mathcal{H} = \{\mathcal{H}_n: \{0, 1\}^* \rightarrow \{0, 1\}^n\}$ is collision resistant, if

$$\Pr_{h \leftarrow \mathcal{H}_n} [A(1^n, h) = (x, x') \text{ s.t. } x \neq x' \land h(x) = h(x')] = \text{neg}(n)$$

for any PPT A.

- Not known to implied by OWFs.
Length-restricted MAC \implies MAC

Construction 13 (Length restricted MAC \implies MAC)

Let $(\text{Gen}, \text{Mac}, \text{Vrfy})$ be a length-restricted MAC, and let $\mathcal{H} = \{\mathcal{H}_n: \{0, 1\}^* \rightarrow \{0, 1\}^n\}$ be an efficient function family.

- **Gen'(1^n):** Sample $k \leftarrow \text{Gen}(1^n)$ and $h \leftarrow \mathcal{H}_n$. Output $k' = (k, h)$
- **Mac'$_{k, h}$(m) = Mac$_k$(h(m))**
- **Vrfy'$_{k, h}$(t, m) = Vrfy$_k$(t, h(m))**

Claim 14

Assume \mathcal{H} is an efficient collision-resistant family and $(\text{Gen}, \text{Mac}, \text{Vrfy})$ is existential unforgeable, then $(\text{Gen}', \text{Mac}', \text{Vrfy}')$ is existential unforgeable MAC.

Proof: ?
Part II

Signature Schemes
Definition 15 (Signature schemes)
A trippet of PPT’s $(Gen, Sign, Vrfy)$ such that

1. $Gen(1^n)$: output a pair of keys $(s, v) \in \{0, 1\}^* \times \{0, 1\}^*$
2. $Sign(s, m)$: output a “signature” $\sigma \in \{0, 1\}^*$
3. $Vrfy(v, m, \sigma)$: output 1 (YES) or 0 (NO)

Consistency: $Vrfy_v(m, \sigma) = 1$ for any $(s, v) \in \text{Supp}(Gen(1^n))$, $m \in \{0, 1\}^*$ and $\sigma \in \text{Supp}(Sign_s(m))$

Definition 16 (Existential unforgability)
A signature scheme is existential unforgeable (EU), if \forall PPT A

$$Pr_{(s, v) \leftarrow Gen(1^n)} \left[A^{Sign_s(1^n, v)} = (m, \sigma) \text{ s.t } Vrfy_v(m, \sigma) = 1 \land Sign_s \text{ didn’t query } m \right]$$

is negligible in n.
Signature schemes cont.

- Signature \implies MAC
- "Harder" to construct than MACs: (even restricted forms) require OWF
- Oracle access to Vrfy is not given
- Strong existential unforgeable signatures (for short, strong signatures): infeasible to generate new valid signatures (even for message for which a signature was asked)

Theorem 17

OWFs imply strong existential unforgeable signatures.
Section 2

OWFs \implies Signatures
Subsection 1

One-time signatures
Definition 18 (length-restricted signatures)

Same as in Definition 15, but for \((s, v) \in \text{Supp}(G(1^n))\), \(\text{Sign}_s\) and \(\text{Vrfy}_v\) only accept messages of length \(n\).
Bounded-query signatures

Definition 19 (ℓ-time signatures)

A signature scheme is existential unforgeable against ℓ-query (for short, ℓ-time signature), if it is existential unforgeable as in Definition 16, but A can only ask for ℓ queries.

Claim 20

Assuming CRH exists, then length restricted k-time signatures can be used to construct k-time signatures.

Proof: ?

Proposition 21

Wlg, the signer of a k-time signature scheme, for fixed k, is deterministic

Proof: ?
Construction 22 (length-restricted, one-time signature)

Let $f : \{0, 1\}^n \mapsto \{0, 1\}^n$.

1. **Gen(1^n):**
 - $s_1^0, s_1^1, \ldots, s_n^0, s_n^1 \leftarrow \{0, 1\}^n$.
 - Secret (signing) key is $s = (s_i^0, s_i^1)_{i=1}^n$.
 - Public (verification) is $v = (v_i^0, v_i^1)_{i=1}^n$ where $v_i^b = f(s_i^b)$.

2. **Sign(s, m):** $\sigma = (s_1^m, \ldots, s_n^m)$

3. **Vrfy($v, m, \sigma = (\sigma_1, \ldots, \sigma_n)$):** check that $f(\sigma_i) = v_i^m$ for all $i \in [n]$

Lemma 23

If f is a OWF, then Construction 22 is a length restricted one-time signature scheme.

Is this a strong signature scheme? With some additional work, it can be turned into a strong one.
Proving Lemma 23

Let a PPT A, $\mathcal{I} \subseteq \mathbb{N}$ and $p \in \text{poly}$ that break the security of Construction 22, we use A to invert f.

Algorithm 24 (Inv)

Input: $y \in \{0, 1\}^n$

1. Choose $(s, v) \leftarrow \text{Gen}(1^n)$ and replace $v_{i}^{b^*}$ for a random $i^* \in [n]$ and $b^* \in \{0, 1\}$, with y.

2. Abort, if $A(1^n, v)$ asks to sign message $m \in \{0, 1\}^n$ with $m_{i^*} = b^*$. Otherwise, use s to answer the query.

3. Let (m', σ') be A's output. Abort, if σ' is not a valid signature for m', or $m'_{i^*} \neq b^*$. Otherwise, return σ_{i^*}.

- v is distributed as is in the real “signature game"
- v is independent of i^* and b^*.
- Therefore Inv inverts f w.p. $\frac{1}{2np(n)}$ for every $n \in \mathcal{I}$.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography December 8, 2016 23 / 39
Subsection 2

Stateful Schemes
Stateful signature schemes

Definition 25 (Stateful scheme)

Same as in Definition 15, but Sign might keep state which is updated every signature.

- Make sense in many applications (e.g., smartcards)
- We’ll later use it a building block for building stateless scheme

\(^1\) Also known as memory-dependant schemes
Stateful schemes — straight-line construction

Let \((\text{Gen}, \text{Sign}, \text{Vrfy})\) be a strong one-time signature scheme.

Construction 26 (straight-line construction)

- \(\text{Gen}'(1^n)\): Output \((s', v') = (s_1, v_1) \leftarrow \text{Gen}(1^n) \).
- \(\text{Sign}'_{s_1}(m_i)\), where \(m_i \) is \(i \)’th message to sign:
 1. Let \((s_{i+1}, v_{i+1}) \leftarrow \text{Gen}(1^n) \)
 2. Let \(\sigma_i = \text{Sign}_{s_i}(m_i, v_{i+1}) \)
 3. Output \(\sigma'_i = (\sigma'_{i-1}, m_i, v_{i+1}, \sigma_i) \).

- \(\text{Vrfy}'_{v_1}(m, \sigma') = (m_1, v_2, \sigma_1), \ldots, (m_i, v_{i+1}, \sigma_i)\):
 Check that
 1. \(\text{Vrfy}_{v_j}((m_j, v_{j+1}), \sigma_j) = 1\) for every \(j \in [i] \)
 2. \(m_i = m \)

\(a \sigma_0' \) is the empty string.
The state of \(\text{Sign} \) is used for maintaining the most recent signing key (e.g., \(s_i \)), and the last published signature that connects \(s_i \) to \(v_1 \).

While polynomial time, it is rather inefficient scheme: both running time and signature size are linear in number of published signatures.

That \((\text{Gen}, \text{Sign}, \text{Vrfy})\) works for any length (specifically, it is possible to sign message that is longer than the verification key), is critically used.

Lemma 27

\((\text{Gen}', \text{Sign}', \text{Vrfy}')\) is a stateful, strong signature scheme.

Proof: Assume \(\exists \text{PPT} \ A', \ p \in \text{poly} \) and infinite set \(I \subseteq \mathbb{N} \), such that \(A' \) breaks the strong security of \((\text{Gen}', \text{Sign}', \text{Vrfy}')\) with probability \(\frac{1}{p(n)} \) for all \(n \in I \). We present \(\text{PPT} \ A \) that breaks the security of \((\text{Gen}, \text{Sign}, \text{Vrfy})\).

We assume for simplicity that \(p \) also bounds the query complexity of \(A' \).
Proving Lemma 27 cont.

Let \((m_t, \sigma') = (m_1, v_2, \sigma_1), \ldots, (m_t, v_{t+1}, \sigma_t)\) be the pair output by \(A'\)

Claim 28

Whenever \(A'\) succeeds, \(\exists i \in [p]\) such that:

1. \(\text{Sign}'\) has output \(\sigma'_{i-1} = (m_1, v_2, \sigma_1), \ldots, (m_{i-1}, v_i, \sigma_{i-1})\)
2. \(\text{Sign}'\) has not output \(\sigma'_i = (m_1, v_2, \sigma_1), \ldots, (m_i, v_{i+1}, \sigma_i)\)

Proof: ?

It follows that

- \(v_i\) was sampled by \(\text{Sign}'\)
 - Let \(s_i\) be the signing key generated by \(\text{Sign}'\) along with \(v_i\), and let \(\tilde{m} = (m_i, v_{i+1})\)
 - \(\text{Vrfy}_{v_i}(\tilde{m}, \sigma_i) = 1\)
- \(\text{Sign}_{s_i}\) was not queried by \(\text{Sign}'\) on \(\tilde{m}\) and output \(\sigma_i\).
- \(\text{Sign}_{s_i}\) was queried at most once by \(\text{Sign}'\)
Definition of A

Algorithm 29 (A)

Input: 1^n, ν

Oracle: Sign_s

1. Choose $i^* \leftarrow [p = p(n)]$ and $(s', \nu') \leftarrow \text{Gen}'(1^n)$.
2. Emulate a random execution of $A'_{\text{Sign}'s'}$ with a single twist:
 - On the i^*'th call to $\text{Sign}'s'$, set $\nu_{i^*} = \nu$ (rather than choosing it via Gen)
 - When need to sign using s_{i^*}, use Sign_s.
3. Let $(m, \sigma = (m_1, \nu_1, \sigma_1), \ldots, (m_q, \nu_q, \sigma_q)) \leftarrow A'$
4. Output $((m_{i^*}, \nu_{i^*}), \sigma_{i^*})$ (abort if $i^* > q$)

- The emulated game $A'_{\text{Sign}'s'}$ has the same distribution as the real game.
- Sign_s is called at most once
- A breaks $(\text{Gen}, \text{Sign}, \text{Vrfy})$ whenever $i^* = \tilde{i}$.
Subsection 3

Somewhat-Stateful Schemes
A somewhat-stateful scheme

Let \((\text{Gen}, \text{Sign}, \text{Vrfy})\) be a strong one-time signature scheme.

Construction 30 (A somewhat-stateful scheme)

- **Gen\(^{\prime}\)\((1^n)\):** Output \((s', v') = (s_\lambda, v_\lambda) \leftarrow \text{Gen}(1^n)\).
- **Sign\(^{\prime}\)\(s_\lambda\)\((m)\):** choose an unused \(r \in \{0, 1\}^n\)

1. For \(i = 0\) to \(n - 1\): if \(a_{r_1, \ldots, i}\) was not set before:
 1. For both \(j \in \{0, 1\}\), let \((s_{r_1, \ldots, i, j}, v_{r_1, \ldots, i, j}) \leftarrow \text{Gen}(1^n)\)
 2. Let \(a_{r_1, \ldots, i} = (v_{r_1, \ldots, i, 0}, v_{r_1, \ldots, i, 1})\).
 3. Let \(\sigma_{r_1, \ldots, i} = \text{Sign}_{s_{r_1, \ldots, i}}(a_{r_1, \ldots, i})\)

2. Output \((r, a_{\lambda}, \sigma_{\lambda}, \ldots, a_{r_1, \ldots, n-1}, \sigma_{r_1, \ldots, n-1}, \sigma_r = \text{Sign}_{s_r}(m))\)

- **Vrfy\(^{\prime}\)\(v_\lambda\)\((m, \sigma') = (r, a_{\lambda}, \sigma_{\lambda}, \ldots, a_{r-1}, \sigma_{r_1, \ldots, n-1}, \sigma_r)\)

Check that

1. \(\text{Vrfy}_{v_{r_1, \ldots, i}}(a_{r_1, \ldots, i}, \sigma_{r_1, \ldots, i}) = 1\) for every \(i \in \{0, \ldots, n - 1\}\)
2. \(\text{Vrfy}_{v_r}(m, \sigma_r) = 1\), for \(v_r = (a_{r_1, \ldots, n-1})_{r_n}\)
A somewhat-stateful Scheme, cont.

- Each one-time signature key is used at most once.

Lemma 31

\((\text{Gen}', \text{Sign}', \text{Vrfy}')\) is a stateful strong signature scheme.

Proof: ?

- Note that \text{Sign}' does not keep track of the message history.
- More efficient scheme — Enough to construct tree of depth \(\omega(\log n)\) (i.e., to choose \(r \in \{0, 1\}^{\ell \in \omega(\log n)}\))
Subsection 4

Stateless Schemes
Stateless Scheme

Let $\tilde{\Pi}_k$ be the set of all functions from $\{0, 1\}^*$ to $\{0, 1\}^k$, let $q \in \text{poly}$ be "large enough", and let $\mathcal{H} = \{\mathcal{H}_n: \{0, 1\}^* \mapsto \{0, 1\}^n\}$ be a CRH.

Construction 32 (Inefficient stateless Scheme)

- **Gen'(1^n)**: Sample $(s_\lambda, v_\lambda) \leftarrow \text{Gen}(1^n)$, $\pi \leftarrow \tilde{\Pi}_{q(n)}$ and $h \leftarrow \mathcal{H}_n$. Output $(s' = (s_\lambda, \pi, h), v' = v_\lambda)$.

- **Sign'_(m)**: Set $r = \pi(h(m))_1, \ldots, n$.

 1. For $i = 0$ to $n - 1$: if $a_{r_1, \ldots, i}$ was not set before:

 1. For both $j \in \{0, 1\}$, let $(s_{r_1, \ldots, i, j}, v_{r_1, \ldots, i, j}) \leftarrow \text{Gen}(1^n; \pi(r_1, \ldots, i, j))$

 2. Let $\sigma_{r_1, \ldots, i} = \text{Sign}_{s_{r_1, \ldots, i}}(a_{r_1, \ldots, i} = (v_{r_1, \ldots, i, 0}, v_{r_1, \ldots, i, 1}))$

 2. Output $(r, a_\lambda, \sigma_\lambda, \ldots, a_{r_1, \ldots, n-1}, \sigma_{r_1, \ldots, n-1}, \sigma_r = \text{Sign}_r(m))$

- **Vrfy'**: unchanged

One one-time signature key might be used several times, but always on the same message.

Efficient scheme: use PRF (?)
Subsection 5

“CRH free" Schemes
Target collision-resistant functions

Definition 33 (target collision-resistant functions (TCR))

A function family \(\mathcal{H} = \{ \mathcal{H}_n : \{0, 1\}^* \rightarrow \{0, 1\}^n \} \), if

\[
\Pr_{(x,a)\leftarrow A_1(1^n); h\leftarrow \mathcal{H}_n; x'\leftarrow A_2(a,h)}[x \neq x' \land h(x) = h(x')] = \text{neg}(n)
\]

for any pair of PPT’s \(A_1, A_2 \).

Theorem 34

OWFs imply efficient compressing TCRs.

Proof: not that trivial...
Target one-time signatures

For simplicity we will focus on non-strong schemes.

Definition 35 (target one-time signatures)

A signature scheme \((\text{Gen}, \text{Sign}, \text{Vrfy})\) is target one-time existential unforgeable (for short, target one-time signature), if

\[
\Pr_{m \leftarrow A(1^n)} \left[m' \neq m \land \text{Vrfy}_v(m', \sigma) = 1 \right] = \text{neg}(n)
\]

for any PPT \(A\)

Claim 36

OWFs imply target one-time signatures.
Random one-time signatures

Definition 37 (random one-time signatures)

A signature scheme \((\text{Gen}, \text{Sign}, \text{Vrfy})\) is **random one-time existential unforgeable** (for short, random one-time signature), if

\[
\Pr_{m \leftarrow \mathcal{M}_n; (s, v) \leftarrow \text{Gen}(1^n)} [m' \neq m \land \text{Vrfy}_v(m', \sigma) = 1] = \text{neg}(n)
\]

for any PPT \(A\) and any efficiently samplable string ensemble \(\mathcal{M} = \{\mathcal{M}_n\}_{n \in \mathbb{N}}\).

Claim 38

Assume \((\text{Gen}, \text{Sign}, \text{Vrfy})\) is target one-time signature scheme, then it is random one-time signature scheme.
Lemma 39

If $(\text{Gen}, \text{Sign}, \text{Vrfy})$ and H in *Construction 32* are target-one-time signature scheme and TCR respectively, then it is a signature scheme.

Proof:
Focus on the target-one-time signatures. Assume for simplicity that an adversary cannot make the signer use the *same* r for signing two *different* messages.

Show that

1. Random-one-time signature suffice for the *nodes* signatures
2. Target-one-time signature suffice for the *leaves* signatures